11.設(shè)橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦點(diǎn)分別為F1,F(xiàn)2,P是橢圓上的點(diǎn).若PF1⊥F1F2,∠F1PF2=60°,則橢圓的離心率為$\frac{\sqrt{3}}{3}$.

分析 設(shè)F1(-c,0),F(xiàn)2(c,0),由題意可得xP=-c,代入橢圓方程求得P的坐標(biāo),再由解直角三角形的知識(shí),結(jié)合離心率公式,解方程可得所求值.

解答 解:設(shè)F1(-c,0),F(xiàn)2(c,0),由題意可得xP=-c,
代入橢圓方程,解得yP=±b$\sqrt{1-\frac{{c}^{2}}{{a}^{2}}}$=±$\frac{^{2}}{a}$,
在直角三角形F1PF2中,
tan60°=$\frac{{F}_{1}{F}_{2}}{P{F}_{1}}$=$\frac{2c}{\frac{^{2}}{a}}$,
即有$\sqrt{3}$b2=2ac,
即為$\sqrt{3}$a2-2ac-$\sqrt{3}$c2=0,
由e=$\frac{c}{a}$,可得$\sqrt{3}$e2+2e-$\sqrt{3}$=0,
解得e=$\frac{\sqrt{3}}{3}$(負(fù)的舍去).
故答案為:$\frac{{\sqrt{3}}}{3}$.

點(diǎn)評(píng) 本題考查橢圓的方程及運(yùn)用,考查離心率的求法,注意運(yùn)用解直角三角形,以及離心率公式,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知直線l的斜率k=$\frac{2}{3}$,且與兩坐標(biāo)軸圍成的三角形面積為3,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若F(c,0)為橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦點(diǎn),橢圓C與直線$\frac{x}{a}+\frac{y}=1$交于A,B兩點(diǎn),線段AB的中點(diǎn)在直線x=c上,則橢圓的離心率為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.直線l:2x-y+2=0過橢圓左焦點(diǎn)F1和一個(gè)頂點(diǎn)B,則該橢圓的離心率為( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{{\sqrt{5}}}{5}$D.$\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{3}}}{2}$,F(xiàn)是橢圓的右焦點(diǎn),點(diǎn)A(0,-2),若直線AF的斜率為$\frac{{2\sqrt{3}}}{3}$,O為坐標(biāo)原點(diǎn).
(1)求橢圓E的方程;
(2)過點(diǎn)A傾斜角為$\frac{2π}{3}$的直線l與E相交于P,Q兩點(diǎn),求△OPQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某幾何體的三視圖如圖所示,則該幾何體的體積等于( 。
A.$\frac{3}{2}$B.2C.$\frac{5}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個(gè)焦點(diǎn)為F(1,0),且過點(diǎn)(-1,$\frac{3}{2}$),右頂點(diǎn)為A,經(jīng)過點(diǎn)F的動(dòng)直線l:x=my+1與橢圓C交于B、C兩點(diǎn).
(1)求橢圓的方程;
(2)記△AOB和△AOC的面積分別為S1和S2,求|S1-S2|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某幾何體的三視圖如圖所示,若這個(gè)幾何體的體積為24,則h=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)數(shù)列{an}滿足:a1=1,an+1=3an,n∈N*,數(shù)列{bn}滿足b1=2,b4=31,且{bn-an}為等差數(shù)列.
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案