精英家教網 > 高中數學 > 題目詳情

【題目】將函數f(x)=3sin(4x+ )圖象上所有點的橫坐標伸長到原來的2倍,再向右平移 個單位長度,得到函數y=g(x)的圖象,則y=g(x)圖象的一條對稱軸是(
A.x=
B.x=
C.
D.

【答案】C
【解析】解:將函數f(x)=3sin(4x+ )圖象上所有點的橫坐標伸長到原來的2倍,可得函數y=3sin(2x+ )的圖象,
再向右平移 個單位長度,可得y=3sin[2(x﹣ )+ ]=3sin(2x﹣ )的圖象,故g(x)=3sin(2x﹣ ).
令 2x﹣ =kπ+ ,k∈z,得到 x= π+ ,k∈z.
則得 y=g(x)圖象的一條對稱軸是 ,
故選:C.
【考點精析】根據題目的已知條件,利用正弦函數的對稱性和函數y=Asin(ωx+φ)的圖象變換的相關知識可以得到問題的答案,需要掌握正弦函數的對稱性:對稱中心;對稱軸;圖象上所有點向左(右)平移個單位長度,得到函數的圖象;再將函數的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數的圖象;再將函數的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數的圖象.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】高考數學試題中共有10道選擇題,每道選擇題都有4個選項,其中有且僅有一個是正確的.評分標準規(guī)定:“每題只選1項,答對得5分,不答或答錯得0分.”某考生每道題都給出了一個答案,已確定有6道題的答案是正確的,而其余題中,有兩道題都可判斷出兩個選項是錯誤的,有一道題可以判斷一個選項是錯誤的,還有一道題因不理解題意只能亂猜,試求出該考生:
(1)得50分的概率;
(2)得多少分的可能性最大;
(3)所得分數ξ的數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】凸四邊形PABQ中,其中A,B為定點,AB= ,P,Q為動點,滿足AP=PQ=QB=1.
(1)寫出cosA與cosQ的關系式;
(2)設△APB和△PQB的面積分別為S和T,求S2+T2的最大值,以及此時凸四邊形PABQ的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知三棱柱ABC﹣A1B1C1中,側面ABB1A1為正方形,延長AB到D,使得AD=BD,平面AA1C1C⊥平面ABB1A1 , A1C1= AA1 , ∠C1A1A=

(1)若E,F分別為C1B1 , AC的中點,求證:EF∥平面ABB1A1
(2)求平面A1B1C1與平面CB1D所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,若存在實數,使得關于的方程有兩個不同的實根,則實數的取值范圍是()

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足a1=1,an+1= (n∈N*),若bn+1=(n﹣2λ)( +1)(n∈N*),b1=﹣λ,且數列{bn}是單調遞增數列,則實數λ的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數定義域為,

1)求的取值范圍;

2)若函數上的最大值與最小值之積為,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l的參數方程為(t為參數以坐標原點為極點,x軸正半軸為極軸建立極坐標系,圓C的極坐標方程為

判斷直線l與圓C的交點個數;

若圓C與直線l交于A,B兩點,求線段AB的長度.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖甲所示,放在水平地面上的物體,受到方向不變的水平推力F的作用,F的大小與時間t的關系和物體運動速度v與時間t的關系如圖乙所示.下列判斷正確的是:

A.t3s時,物體受到力的合力為零

B.t6s時,將F撤掉,物體立刻靜止

C.2s4s內物體所受摩擦力逐漸增大

D.t1s時,物體所受摩擦力是1N

查看答案和解析>>

同步練習冊答案