過雙曲線x2-
y2
2
=1的右焦點F作直線l交雙曲線于A,B兩點,若|AB|=4,則這樣的直線l有( 。
A、1條B、2條C、3條D、4條
分析:雙曲線的兩個頂點之間的距離是2,小于4,過拋物線的焦點一定有兩條直線使得交點之間的距離等于4,當(dāng)直線與實軸垂直時,做出直線與雙曲線交點的縱標(biāo),得到也是一條長度等于4的線段.
解答:解:∵雙曲線的兩個頂點之間的距離是2,小于4,
∴過拋物線的焦點一定有兩條直線使得交點之間的距離等于4,
當(dāng)直線與實軸垂直時,
有3-
y2
2
=1
,
∴y=±2,
∴直線AB的長度是4,
綜上可知有三條直線滿足|AB|=4,
故選C.
點評:本題考查直線與雙曲線之間的關(guān)系問題,本題解題的關(guān)鍵是看清楚當(dāng)直線的斜率不存在,即直線與實軸垂直時,要驗證線段的長度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過雙曲線x2-
y2
2
=1
的右焦點作直線l交雙曲線與A,B兩點,若|AB|=5則這樣的直線共有( 。l
A、2B、3C、4D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列是有關(guān)直線與圓錐曲線的命題:
①過點(2,4)作直線與拋物線y2=8x有且只有一個公共點,這樣的直線有2條;
②過拋物線y2=4x的焦點作一條直線與拋物線相交于A,B兩點,它們的橫坐標(biāo)之和等于5,則這樣的直線有且僅有兩條;
③過點(3,1)作直線與雙曲線
x2
4
-y2=1
有且只有一個公共點,這樣的直線有3條;
④過雙曲線x2-
y2
2
=1
的右焦點作直線l交雙曲線于A,B兩點,若|AB|=4,則滿足條件的直線l有3條;
⑤已知雙曲線x2-
y2
2
=1
和點A(1,1),過點A能作一條直線l,使它與雙曲線交于P,Q兩點,且點A恰為線段PQ的中點.
其中說法正確的序號有
①②④
①②④
.(請寫出所有正確的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下四個關(guān)于圓錐曲線的命題中:
①雙曲線
x2
16
-
y2
9
=1
與橢圓
x2
49
+
y2
24
=1
有相同的焦點;
②在平面內(nèi),設(shè)A、B為兩個定點,P為動點,且|PA|+|PB|=k,其中常數(shù)k為正實數(shù),則動點P的軌跡為橢圓;
③方程2x2-3x+1=0的兩根可分別作為橢圓和雙曲線的離心率;
④過雙曲線x2-
y2
2
=1
的右焦點F作直線l交雙曲線于A、B兩點,若|AB|=4,則這樣的直線l有且僅有3條.
其中真命題的序號為
①④
①④
(寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過雙曲線x2-
y22
=1的右焦點作直線l交雙曲線于A、B兩點,若實數(shù)λ使得|AB|=λ的直線l恰有3條,則λ=
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過雙曲線x2-
y2
2
=1
的右焦點作直線l交雙曲線與A,B兩點.若使|AB|=λ(λ為實數(shù))的直線l恰有三條,則λ=( 。

查看答案和解析>>

同步練習(xí)冊答案