8.如圖,在Rt△ABC中,∠CAB=90°,AB=2,AC=.DO⊥AB于O點(diǎn),OA=OB,DO=2,曲線E過(guò)C點(diǎn),動(dòng)點(diǎn)P在E上運(yùn)動(dòng),且保持|PA|+|PB|的值不變.
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求曲線E的方程;
(2)過(guò)D點(diǎn)的直線L與曲線E相交于不同的兩點(diǎn)M、N且M在D、N之間,設(shè)=λ,試確定實(shí)數(shù)λ的取值范圍.

【答案】分析:(1)建立平面直角坐標(biāo)系,如圖所示∵|PA|+|PB|=|CA|+|CB|=+,可得動(dòng)點(diǎn)P的軌跡是橢圓,由此易得橢圓的方程;

(2)設(shè)直線L的方程為y=kx+2,代入曲線E的方程x2+2y2=2,得(2k2+1)x2+8kx+6=0設(shè)M(x1,y1),N(x2,y2),則,再由過(guò)D點(diǎn)的直線L可能是Y軸也可能斜率存在分為兩類,由=λ對(duì)實(shí)數(shù)λ的取值范圍進(jìn)行討論即可得到所求的答案
解答:解:(1)建立平面直角坐標(biāo)系,如圖所示∵|PA|+|PB|=|CA|+|CB|=+
∴動(dòng)點(diǎn)P的軌跡是橢圓
∴a=,b=1,c=1
∴曲線E的方程是 
(2)設(shè)直線L的方程為y=kx+2,代入曲線E的方程x2+2y2=2,得(2k2+1)x2+8kx+6=0
設(shè)M(x1,y1),N(x2,y2),則

i)  L與y軸重合時(shí),=λ=
ii)  L與y軸不重合時(shí),由①得   
 又∵λ==
∵x2<x1x1>0
∴0<λ<1,



∴6<<8
∴4<
∴4<,即,
解得λ的取值范圍是[,1).
點(diǎn)評(píng):本題考查直線與圓錐曲線的綜合題,考查了根與系數(shù)的關(guān)系橢圓的性質(zhì)等,解題的關(guān)鍵是認(rèn)真審題準(zhǔn)確轉(zhuǎn)化題設(shè)中的關(guān)系,本題綜合性強(qiáng),符號(hào)計(jì)算運(yùn)算量大,解題時(shí)要認(rèn)真嚴(yán)謹(jǐn)避免馬虎出錯(cuò).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,D為BC上一點(diǎn),∠DAC=30°,BD=2,AB=2
3
,則AC的長(zhǎng)為(  )
A、2
2
B、3
C、
3
D、
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點(diǎn)D,過(guò)點(diǎn)D作⊙O的切線,交BC于點(diǎn)E.
(1)求證:點(diǎn)E是邊BC的中點(diǎn);
(2)若EC=3,BD=2
6
,求⊙O的直徑AC的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠ABC=90°,BA=BC=2,AE⊥平面ABC,CD⊥平面ABC,CE交AD于點(diǎn)P.
(1)若AE=CD,點(diǎn)M為BC的中點(diǎn),求證:直線MP∥平面EAB
(2)若AE=2,CD=1,求銳二面角E-BC-A的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

8.如圖,在Rt△ABC中,∠CAB=90°,AB=2,AC=
2
2
.DO⊥AB于O點(diǎn),OA=OB,DO=2,曲線E過(guò)C點(diǎn),動(dòng)點(diǎn)P在E上運(yùn)動(dòng),且保持|PA|+|PB|的值不變.
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求曲線E的方程;
(2)過(guò)D點(diǎn)的直線L與曲線E相交于不同的兩點(diǎn)M、N且M在D、N之間,設(shè)
DM
DN
=λ,試確定實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,AC=1,BC=x,D是斜邊AB的中點(diǎn),將△BCD沿直線CD翻折,若在翻折過(guò)程中存在某個(gè)位置,使得CB⊥AD,則x的取值范圍是(  )
A、(0,
3
]
B、(
2
2
,2]
C、(
3
,2
3
]
D、(2,4]

查看答案和解析>>

同步練習(xí)冊(cè)答案