【題目】已知函數(shù)f(x)=2ax2+4(a﹣3)x+5在區(qū)間(﹣∞,3)上是減函數(shù),則a的取值范圍是( )
A.
B.
C.
D.

【答案】A
【解析】解:當(dāng)a=0時(shí),f(x)=﹣12x+5為一次函數(shù),k<0說(shuō)明f(x)在(﹣∞,3)上是減函數(shù),滿足題意;

當(dāng)a>0時(shí),f(x)為一元二次函數(shù),開(kāi)口朝上,要使得f(x)在(﹣∞,3)上是減函數(shù),需滿足:

0<a≤

當(dāng)a<0時(shí),f(x)為一元二次函數(shù),開(kāi)口朝下,要使得f(x)在(﹣∞,3)上是減函數(shù)是不可能存在的,故舍去.綜上,a的取值范圍為:[0, ]

所以答案是:A

【考點(diǎn)精析】關(guān)于本題考查的二次函數(shù)的性質(zhì),需要了解增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減小;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線E的中心為原點(diǎn),P(3,0)是E的焦點(diǎn),過(guò)P的直線l與E相交于A,B兩點(diǎn),且AB的中點(diǎn)為N(﹣12,﹣15),則E的方程式為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,點(diǎn)E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(1)求證PA∥平面EDB;
(2)求二面角C﹣PB﹣D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)=x2 在其定義域內(nèi)的一個(gè)子區(qū)間(k﹣1,k+1)內(nèi)不是單調(diào)函數(shù),則實(shí)數(shù)k的取值范圍( )
A.[1,+∞)
B.[1,
C.[1,+2)
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,AD∥BC,AD⊥平面PAB,△PAB是正三角形,AD=AB=2,BC=1,E是線段AB的中點(diǎn)

(1)求證:平面PDE⊥平面ABCD;
(2)設(shè)直線PC與平面PDE所成角為θ,求cosθ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:f1(x)=f(x),當(dāng)n≥2且x∈N*時(shí),fn(x)=f(fn1(x)),對(duì)于函數(shù)f(x)定義域內(nèi)的x0 , 若正在正整數(shù)n是使得fn(x0)=x0成立的最小正整數(shù),則稱n是點(diǎn)x0的最小正周期,x0稱為f(x)的n~周期點(diǎn),已知定義在[0,1]上的函數(shù)f(x)的圖象如圖,對(duì)于函數(shù)f(x),下列說(shuō)法正確的是(寫(xiě)出所有正確命題的編號(hào))

①1是f(x)的一個(gè)3~周期點(diǎn);
②3是點(diǎn) 的最小正周期;
③對(duì)于任意正整數(shù)n,都有fn )= ;
④若x0∈( ,1],則x0是f(x)的一個(gè)2~周期點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了得到函數(shù) 的圖象,只需將函數(shù)y=sin2x的圖象上每一點(diǎn)( )
A.向左平移 個(gè)單位長(zhǎng)度
B.向左平移 個(gè)單位長(zhǎng)度
C.向右平移 個(gè)單位長(zhǎng)度
D.向右平移 個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐P﹣ABCD的底面是菱形,PA⊥面ABCD,PA=AD=2,∠ABC=60°,E為PD中點(diǎn).

(1)求證:PB∥平面ACE;
(2)求二面角E﹣AC﹣D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x),φ(x)滿足關(guān)系φ(x)=f(x)f(x+α)(其中α是常數(shù)).
(1)如果α=1,f(x)=2x﹣1,求函數(shù)φ(x)的值域;
(2)如果α= ,f(x)=sinx,且對(duì)任意x∈R,存在x1 , x2∈R,使得φ(x1)≤φ(x)≤φ(x2)恒成立,求|x1﹣x2|的最小值;
(3)如果f(x)=Asin(ωx+)(A>0,ω>0),求函數(shù)φ(x)的最小正周期(只需寫(xiě)出結(jié)論).

查看答案和解析>>

同步練習(xí)冊(cè)答案