分析 (1)由正弦定理得:sinBcosC+sinCcosB=2sinAcosB,再由正弦加法定理、誘導(dǎo)公式得sinA=2sinAcosB,從而cosB=$\frac{1}{2}$,由此能求出角B.
(2)求出a+c=7,再由余弦定理得ac=12,由此能求出△ABC的面積.
解答 解:(1)∵△ABC的三個(gè)內(nèi)角A,B,C的對邊分別是a,b,c,
且bcosC+ccosB=2acosB.
∴由正弦定理得:sinBcosC+sinCcosB=2sinAcosB,
∴sin(B+C)=2sinAcosB,∴sinA=2sinAcosB,
∴cosB=$\frac{1}{2}$,
∵B∈(0,π),∴B=$\frac{π}{3}$.
(2)∵$b=\sqrt{13}$,△ABC的周長為$\sqrt{13}+7$,∴a+c=7,
由余弦定理得:13=a2+c2-2accosB=a2+c2-ac,
(a+c)2=a2+c2+2ac=a2+c2-ac+3ac=13+3ac=49,
解得ac=12,
∴△ABC的面積$S=\frac{1}{2}acsinB$=$\frac{1}{2}×12×sin\frac{π}{3}$=3$\sqrt{3}$.
點(diǎn)評 本題考查角的大小、三角形面積的求法,考查正弦定理、余弦定理、三角形面積公式、誘導(dǎo)公式、正弦加法定理等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{13}$ | B. | $\frac{5}{18}$ | C. | $\frac{1}{3}$ | D. | $\frac{5}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 底面為直角梯形 | B. | 有一個(gè)側(cè)面是等腰直角三角形 | ||
C. | 有兩個(gè)側(cè)面是直角三角形 | D. | 四個(gè)側(cè)面都是直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0} | B. | {1} | C. | {0,1} | D. | {1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
年輕人 | 非年輕人 | 合計(jì) | |
經(jīng)常使用單車用戶 | 100 | 20 | 120 |
不常使用單車用戶 | 60 | 20 | 80 |
合計(jì) | 160 | 40 | 200 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com