橢圓C:的左、右焦點(diǎn)分別是F1.F2,離心率為過F,且垂直于x軸的直線被橢圓C截得的線段長為l

(Ⅰ)求橢圓C的方程;

(Ⅱ)點(diǎn)P是橢圓C上除長軸端點(diǎn)外的任一點(diǎn),連接PF1,PF2,設(shè)∠F1PF2的角平分線PM交C的長軸于點(diǎn)M(m,0),求m的取值范圍;

(Ⅲ)在(Ⅱ)的條件下,過點(diǎn)p作斜率為k的直線l,使得l與橢圓C有且只有一個(gè)公共點(diǎn).

設(shè)直線PF1,PF2的斜率分別為k1,k2,若k≠0,試證明為定值,并求出這個(gè)定值.

答案:
解析:

  (1)

  (2)

  (3)略


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•臨沂二模)
x2
a2
+
y2
b2
=1
(a>b>0)如圖,已知橢圓C:的左、右焦點(diǎn)分別為F1、F2,離心率為
3
2
,點(diǎn)A是橢圓上任一點(diǎn),△AF1F2的周長為4+2
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)Q(-4,0)任作一動(dòng)直線l交橢圓C于M,N兩點(diǎn),記
MQ
QN
,若在線段MN上取一點(diǎn)R,使得
MR
=-λ
RN
,則當(dāng)直線l轉(zhuǎn)動(dòng)時(shí),點(diǎn)R在某一定直線上運(yùn)動(dòng),求該定直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:的左、右焦點(diǎn)為F1、F2,離心率為e. 直線與x軸、y軸分別交于點(diǎn)A、B,M是直線l與橢圓C的一個(gè)公共點(diǎn),P是點(diǎn)F1關(guān)于直線l的對(duì)稱點(diǎn),設(shè)

   (Ⅰ)證明:;

   (Ⅱ)若的周長為6;寫出橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年浙江省嘉興市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知橢圓C:的左、右焦點(diǎn)分別為F1,F(xiàn)2,O為原點(diǎn).
(I)如圖①,點(diǎn)M為橢圓C上的一點(diǎn),N是MF1的中點(diǎn),且NF2丄MF1,求點(diǎn)M到y(tǒng)軸的距離;
(II)如圖②,直線l::y=k+m與橢圓C上相交于P,G兩點(diǎn),若在橢圓C上存在點(diǎn)R,使OPRQ為平行四邊形,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(新課標(biāo)2卷解析版) 題型:選擇題

設(shè)橢圓C:的左、右焦點(diǎn)分別為、,P是C上的點(diǎn),,

=,則C的離心率為(    )

A.             B.               C.               D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆云南省高二上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷 題型:解答題

(本小題滿分12分)設(shè)橢圓C:的左、右焦點(diǎn)分別為,,點(diǎn)滿足  

(Ⅰ)求橢圓C的離心率;

(Ⅱ)若已知點(diǎn),設(shè)直線與橢圓C相交于A,B兩點(diǎn),且,

求橢圓C的方程。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案