設(shè)橢圓C:的左、右焦點分別為,P是C上的點,,

=,則C的離心率為(    )

A.             B.               C.               D.

 

【答案】

D

【解析】由題意,設(shè),則,,所以由橢圓的定義知:,又因為

,所以離心率為,故選D.

【考點定位】本小題主要考查橢圓的定義、幾何性質(zhì)、數(shù)形結(jié)合與化歸的數(shù)學(xué)思想,屬中低檔題,熟練橢圓的基礎(chǔ)知識是解答好本類題目的關(guān)鍵.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系xOy中,已知橢圓C:
y2
a2
+
y2
b2
=1(a>b>0)的離心率e=
3
2
,左右兩個焦分別為F1、F2.過右焦點F2且與軸垂直的
直線與橢圓C相交M、N兩點,且|MN|=1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的左頂點為A,下頂點為B,動點P滿足
PA
AB
=m-4,(m∈R)試求點P的軌跡方程,使點B關(guān)于該軌跡的對稱點落在橢圓C上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東省揭陽市2007年高中畢業(yè)班第一次高考模擬考試題(理科) 題型:044

如圖,在直角坐標(biāo)系xOy中,已知橢圓的離心率e=,左右兩個焦分別為F1、F2.過右焦點F2且與x軸垂直的直線與橢圓C相交M、N兩點,且|MN|=1.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)橢圓C的左頂點為A,下頂點為B,動點P滿足,()試求點P的軌跡方程,使點B關(guān)于該軌跡的對稱點落在橢圓C上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南鄭州盛同學(xué)校高三4月模擬考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)F1、F2分別為橢圓C: =1(a>b>0)的左、右兩個焦 點。(1)若橢圓C上的點A(1,)到F1、F2兩點的 距離之和等于4,寫出橢圓C的方程和焦點坐標(biāo);

(2)設(shè)點K是(1)中所得橢圓上的動點,求線段F1K的中點的軌跡方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省湛江二中高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,在直角坐標(biāo)系xOy中,已知橢圓C:+=1(a>b>0)的離心率e=,左右兩個焦分別為F1、F2.過右焦點F2且與軸垂直的
直線與橢圓C相交M、N兩點,且|MN|=1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的左頂點為A,下頂點為B,動點P滿足=m-4,(m∈R)試求點P的軌跡方程,使點B關(guān)于該軌跡的對稱點落在橢圓C上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年內(nèi)蒙古赤峰市高三統(tǒng)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,在直角坐標(biāo)系xOy中,已知橢圓C:+=1(a>b>0)的離心率e=,左右兩個焦分別為F1、F2.過右焦點F2且與軸垂直的
直線與橢圓C相交M、N兩點,且|MN|=1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的左頂點為A,下頂點為B,動點P滿足=m-4,(m∈R)試求點P的軌跡方程,使點B關(guān)于該軌跡的對稱點落在橢圓C上.

查看答案和解析>>

同步練習(xí)冊答案