【題目】設函數(shù),.

1)若曲線在點處的切線與直線垂直,求的單調(diào)性和極小值(其中為自然對數(shù)的底數(shù));

2)若對任意的,恒成立,求的取值范圍.

【答案】1)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,極小值為;(2.

【解析】

1)由題意可得,可求得的值,利用導數(shù)可求得函數(shù)的單調(diào)區(qū)間和極小值;

2)由,構(gòu)造函數(shù),可知函數(shù)在區(qū)間上單調(diào)遞減,可轉(zhuǎn)化為對任意的恒成立,由參變量分離法得出對任意的恒成立,求出二次函數(shù)上的最大值,進而可得出實數(shù)的取值范圍.

1,,

由于曲線在點處的切線與直線垂直,則,可得.

此時,,定義域為,令,得.

列表如下:

極小值

所以,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,

函數(shù)的極小值為;

2)由

,則

由于,所以,函數(shù)上單調(diào)遞減,

,由題意可知對任意的恒成立,可得,

對于二次函數(shù),

時,函數(shù)取得最大值,.

因此,實數(shù)的取值范圍是.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點為,過點且與軸垂直的直線被橢圓截得的線段長為,且與短軸兩端點的連線相互垂直.

1)求橢圓的方程;

2)若圓上存在兩點,,橢圓上存在兩個點滿足:三點共線,三點共線,且,求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學生考試中答對但得不了滿分的原因多為答題不規(guī)范,具體表現(xiàn)為:解題結(jié)果正確,無明顯推理錯誤,但語言不規(guī)范、缺少必要文字說明、卷面字跡不清、得分要點缺失等,記此類解答為“類解答”為評估此類解答導致的失分情況,某市教研室做了項試驗:從某次考試的數(shù)學試卷中隨機抽取若干屬于“類解答”的題目,掃描后由近百名數(shù)學老師集體評閱,統(tǒng)計發(fā)現(xiàn),滿分12分的題,閱卷老師所評分數(shù)及各分數(shù)所占比例大約如下表:

教師評分(滿分12分)

11

10

9

各分數(shù)所占比例

某次數(shù)學考試試卷評閱采用“雙評+仲裁”的方式,規(guī)則如下:兩名老師獨立評分,稱為一評和二評,當兩者所評分數(shù)之差的絕對值小于等于1分時,取兩者平均分為該題得分;當兩者所評分數(shù)之差的絕對值大于1分時,再由第三位老師評分,稱之為仲裁,取仲裁分數(shù)和一、二評中與之接近的分數(shù)的平均分為該題得分;當一、二評分數(shù)和仲裁分數(shù)差值的絕對值相同時,取仲裁分數(shù)和前兩評中較高的分數(shù)的平均分為該題得分.(假設本次考試閱卷老師對滿分為12分的題目中的“類解答”所評分數(shù)及比例均如上表所示,比例視為概率,且一、二評與仲裁三位老師評分互不影響).

1)本次數(shù)學考試中甲同學某題(滿分12分)的解答屬于“類解答”,求甲同學此題得分的分布列及數(shù)學期望;

2)本次數(shù)學考試有6個解答題,每題滿分12分,同學乙6個題的解答均為“類解答”.

①記乙同學6個題得分為的題目個數(shù)為計算事件的概率.

②同學丙的前四題均為滿分,第5題為“類解答”,第6題得8.以乙、丙兩位同學解答題總分均值為依據(jù),談談你對“類解答”的認識.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某購物商場分別推出支付寶和微信掃碼支付購物活動,活動設置了一段時間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.現(xiàn)統(tǒng)計了活動剛推出一周內(nèi)每天使用掃碼支付的人次,用表示活動推出的天數(shù),表示每天使用掃碼支付的人次,統(tǒng)計數(shù)據(jù)如下表所示:

1)根據(jù)散點圖判斷,在推廣期內(nèi),掃碼支付的人次關(guān)于活動推出天數(shù)的回歸方程適合用來表示,求出該回歸方程,并預測活動推出第天使用掃碼支付的人次;

2)推廣期結(jié)束后,商場對顧客的支付方式進行統(tǒng)計,結(jié)果如下表:

支付方式

現(xiàn)金

會員卡

掃碼

比例

商場規(guī)定:使用現(xiàn)金支付的顧客無優(yōu)惠,使用會員卡支付的顧客享受折優(yōu)惠,掃碼支付的顧客隨機優(yōu)惠,根據(jù)統(tǒng)計結(jié)果得知,使用掃碼支付的顧客,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為.現(xiàn)有一名顧客購買了元的商品,根據(jù)所給數(shù)據(jù)用事件發(fā)生的頻率來估計相應事件發(fā)生的概率,估計該顧客支付的平均費用是多少?

參考數(shù)據(jù):設,,

參考公式:對于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計公式分別為:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為迎接年北京冬季奧運會,普及冬奧知識,某校開展了冰雪答題王冬奧知識競賽活動.現(xiàn)從參加冬奧知識競賽活動的學生中隨機抽取了名學生,將他們的比賽成績(滿分為分)分為組:,,,得到如圖所示的頻率分布直方圖.

1)求的值;

2)記表示事件從參加冬奧知識競賽活動的學生中隨機抽取一名學生,該學生的比賽成績不低于,估計的概率;

3)在抽取的名學生中,規(guī)定:比賽成績不低于分為優(yōu)秀,比賽成績低于分為非優(yōu)秀.請將下面的列聯(lián)表補充完整,并判斷是否有的把握認為比賽成績是否優(yōu)秀與性別有關(guān)?

優(yōu)秀

非優(yōu)秀

合計

男生

女生

合計

參考公式及數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),是自然對數(shù)的底數(shù)),是函數(shù)的一個極值點.

1)求函數(shù)的單調(diào)遞增區(qū)間;

2)設,若,不等式恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校同時提供兩類線上選修課程,類選修課每次觀看線上直播分鐘,并完成課后作業(yè)分鐘,可獲得積分分;類選修課每次觀看線上直播分鐘,并完成課后作業(yè)分鐘,可獲得積分分.每周開設次,共開設周,每次均為獨立內(nèi)容,每次只能選擇類、類課程中的一類學習.當選擇類課程次,類課程次時,可獲得總積分共_______分.如果規(guī)定學生觀看直播總時間不得少于分鐘,課后作業(yè)總時間不得少于分鐘,則通過線上選修課的學習,最多可以獲得總積分共________分.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線過點,傾斜角為.以原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程

1)寫出直線的參數(shù)方程及曲線的直角坐標方程;

2)若相交于,兩點,為線段的中點,且,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】年是打贏藍天保衛(wèi)戰(zhàn)三年行動計劃的決勝之年,近年來,在各地各部門共同努力下,藍天保衛(wèi)戰(zhàn)各項任務措施穩(wěn)步推進,取得了積極成效,某學生隨機收集了甲城市近兩年上半年中各天的空氣量指數(shù),得到頻數(shù)分布表如下:

年上半年中天的頻數(shù)分布表

的分組

天數(shù)

年上半年中天的頻數(shù)分布表

的分組

天數(shù)

1)估計年上半年甲城市空氣質(zhì)量優(yōu)良天數(shù)的比例;

2)求年上半年甲城市的平均數(shù)和標準差的估計值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表);(精確到

3)用所學的統(tǒng)計知識,比較年上半年與年上半年甲城市的空氣質(zhì)量情況.

附:

的分組

空氣質(zhì)量

優(yōu)

輕度污染

中度污染

重度污染

嚴重污染

.

查看答案和解析>>

同步練習冊答案