A. | $\frac{a+b}{2}$ | B. | $\sqrt{ab}$ | C. | $\sqrt{\frac{{a}^{2}+^{2}}{2}}$ | D. | $\frac{2ab}{a+b}$ |
分析 利用基本不等式的性質(zhì)即可判斷出結(jié)論.
解答 解:∵a>0,b>0,∴$\frac{2ab}{a+b}$$≤\frac{2ab}{2\sqrt{ab}}$=$\sqrt{ab}$,$\frac{a+b}{2}$≥$\sqrt{ab}$,
$\sqrt{\frac{{a}^{2}+^{2}}{2}}$=$\sqrt{\frac{2({a}^{2}+^{2})}{4}}$≥$\sqrt{\frac{(a+b)^{2}}{4}}$=$\frac{a+b}{2}$,當(dāng)且僅當(dāng)a=b>0時(shí)取等號(hào).
則$\frac{a+b}{2}$,$\sqrt{ab}$,$\sqrt{\frac{{a}^{2}+^{2}}{2}}$,$\frac{2ab}{a+b}$中最小是$\frac{2ab}{a+b}$.
故選:D.
點(diǎn)評(píng) 本題考查了基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com