定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線就和兩平面的交線平行.
請對上面定理加以證明,并說出定理的名稱及作用.
見解析
已知:如圖所示,l∥α,l?β,α∩β=m.
求證:l∥m.
證明:∵l∥α,
∴l(xiāng)和α沒有公共點,
又∵m在α內,
∴l(xiāng)和m也沒有公共點,
∵l和m都在平面β內,且沒有公共點,
∴l(xiāng)∥m.
此定理是直線與平面平行的性質定理.
定理的作用是由“線與面平行”判斷或證明“線、線平行”.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在圓錐中,已知的直徑的中點.

(1)證明:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,長方體中,,G是上的動點。
(l)求證:平面ADG
(2)判斷與平面ADG的位置關系,并給出證明;
(3)若G是的中點,求二面角G-AD-C的大小;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在五面體ABCDEF中,四邊形ABCD是矩形,DE⊥平面ABCD.

(1)求證:AB∥EF;
(2)求證:平面BCF⊥平面CDEF.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,正方形ADEF與梯形ABCD所在的平面互相垂直,,,.

(1)求證:
(2)求直線與平面所成角的正切值;
(3)在上找一點,使得∥平面ADEF,請確定M點的位置,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱柱ABC—A1B1C1中,AA1⊥面ABC,AC⊥BC,E、F分別在線段上,B1E=3EC1,AC=BC=CC1=4.

(1)求證:BC⊥AC1;
(2)試探究:在AC上是否存在點F,滿足EF//平面A1ABB1,若存在,請指出點F的位置,并給出證明;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知平面、和直線,給出條件:①;②;③;④;⑤.
由這五個條件中的兩個同時成立能推導出的是(   )
A.①④B.①⑤C.②⑤D.③⑤

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列命題正確的是(     ).
A.a//b, a⊥αa⊥b  B.a⊥α, b⊥αa//b
C.a⊥α, a⊥bb//α  D.a//α,a⊥bb⊥α

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知下列命題:
①設m為直線,為平面,且m,則“m//”是“”的充要條件;
的展開式中含x3的項的系數(shù)為60;
③設隨機變量~N(0,1),若P(≥2)=p,則P(-2<<0)=;
④若不等式|x+3|+|x-2|≥2m+1恒成立,則m的取值范圍是(,2);
⑤已知奇函數(shù)滿足,且0<x<,則函數(shù)在[]上有5個零點.
其中真命題的序號是   (寫出全部真命題的序號).

查看答案和解析>>

同步練習冊答案