已知關(guān)于x的二次方程x2+2mx+2m+1=0.
(1)若方程有兩根,其中一根在區(qū)間(-1,0)內(nèi),另一根在區(qū)間(1,2)內(nèi),求實(shí)數(shù)m的取值范圍;
(2)若方程兩根均在區(qū)間(0,1)內(nèi),求實(shí)數(shù)m的取值范圍.

(1)-<m<-.(2)-<m≤1-

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和,數(shù)列滿足
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

對(duì)于函數(shù),若在定義域內(nèi)存在實(shí)數(shù),滿足,則稱為“局部奇函數(shù)”.
(1)已知函數(shù),試判斷是否為“局部奇函數(shù)”?并說(shuō)明理由;
(2)若為定義域上的“局部奇函數(shù)”,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

市場(chǎng)營(yíng)銷人員對(duì)過去幾年某商品的價(jià)格及銷售數(shù)量的關(guān)系作數(shù)據(jù)分析發(fā)現(xiàn)有如下規(guī)律:該商品的價(jià)格每上漲x%(x>0),銷售數(shù)量就減少kx%(其中k為正常數(shù)).目前該商品定價(jià)為每個(gè)a元,統(tǒng)計(jì)其銷售數(shù)量為b個(gè).
(1)當(dāng)k=時(shí),該商品的價(jià)格上漲多少,才能使銷售的總金額達(dá)到最大?
(2)在適當(dāng)?shù)臐q價(jià)過程中,求使銷售總金額不斷增加時(shí)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某單位決定對(duì)本單位職工實(shí)行年醫(yī)療費(fèi)用報(bào)銷制度,擬制定年醫(yī)療總費(fèi)用在2萬(wàn)元至10萬(wàn)元(包括2萬(wàn)元和10萬(wàn)元)的報(bào)銷方案,該方案要求同時(shí)具備下列三個(gè)條件:①報(bào)銷的醫(yī)療費(fèi)用y(萬(wàn)元)隨醫(yī)療總費(fèi)用x(萬(wàn)元)增加而增加;②報(bào)銷的醫(yī)療費(fèi)用不得低于醫(yī)療總費(fèi)用的50%;③報(bào)銷的醫(yī)療費(fèi)用不得超過8萬(wàn)元.
(1)請(qǐng)你分析該單位能否采用函數(shù)模型y=0.05(x2+4x+8)作為報(bào)銷方案;
(2)若該單位決定采用函數(shù)模型y=x-2lnx+a(a為常數(shù))作為報(bào)銷方案,請(qǐng)你確定整數(shù)a的值.(參考數(shù)據(jù):ln2≈0.69,ln10≈2.3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某地方政府在某地建一座橋,兩端的橋墩相距m米,此工程只需建兩端橋墩之間的橋面和橋墩(包括兩端的橋墩).經(jīng)預(yù)測(cè),一個(gè)橋墩的費(fèi)用為256萬(wàn)元,相鄰兩個(gè)橋墩之間的距離均為x,且相鄰兩個(gè)橋墩之間的橋面工程費(fèi)用為(1+)x萬(wàn)元,假設(shè)所有橋墩都視為點(diǎn)且不考慮其他因素,記工程總費(fèi)用為y萬(wàn)元.
(1)試寫出y關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)m=1280米時(shí),需要新建多少個(gè)橋墩才能使y最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

畫出函數(shù)y=的圖象,并利用圖象回答:k為何值時(shí),方程=k無(wú)解?有一個(gè)解?有兩個(gè)解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

首屆世界低碳經(jīng)濟(jì)大會(huì)在南昌召開,本屆大會(huì)以“節(jié)能減排,綠色生態(tài)”為主題.某單位在國(guó)家科研部門的支持下,進(jìn)行技術(shù)攻關(guān),采用了新工藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品.已知該單位每月的處理量最少為400噸,最多為600噸,月處理成本y(元)與月處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為y=x2-200x+80 000,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價(jià)值為100元.
(1)該單位每月處理量為多少噸時(shí),才能使每噸的平均處理成本最低?
(2)該單位每月能否獲利?如果獲利,求出最大利潤(rùn);如果不獲利,則國(guó)家至少需要補(bǔ)貼多少元才能使該單位不虧損?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)y=(log2x)2+(t-2)log2x-t+1,若t在[-2,2]上變化時(shí),y恒取正值,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案