【題目】已知函數(shù),,是函數(shù)的導函數(shù).
(1)若,求證:對任意,;
(2)若函數(shù)有兩個極值點,求實數(shù)的取值范圍.
【答案】(1)見解析;(2)
【解析】
(1)當時,,只需證明的最小值大于等于零即可;
(2)法一:函數(shù)有兩個極值點,即在上有兩個不等根,轉(zhuǎn)化為在上有兩個不等根,注意到和函數(shù)互為反函數(shù),將所求問題進一步轉(zhuǎn)化為和函數(shù)有兩個不同的交點,構(gòu)造函數(shù),利用導數(shù)解決即可.法二:有兩個變號零點,分,兩種情況討論,在討論時,注意二次求導,結(jié)合極限即可得到答案.
(1)當時,,,
在上單調(diào)遞增,
,
∴當時,,在上單調(diào)遞減,
當時,,在上單調(diào)遞增,
∴,證畢.
(2)法一:函數(shù)有兩個極值點,
即有兩個變號零點,
即在上有兩個不等根,
即在上有兩個不等根,
即函數(shù)和的圖象有兩個不同的交點.
∵函數(shù)和函數(shù)互為反函數(shù),
∴只需函數(shù)和函數(shù)有兩個不同的交點,
即方程有兩個不等正根,
令,,
∴當時,,在上單調(diào)遞減,
當時,,在上單調(diào)遞增,
∴,
又∵時,;時,,
∴.
法二:函數(shù)有兩個極值點,即有兩個變號零點,
當時,,由(1),則在
上是增函數(shù),無極值點,
當時,令,則,因為,
,且在上是增函數(shù),存在,使得,
當時,,當時,,所以在上單調(diào)遞
減,在上單調(diào)遞增,則,由,
得,則,令,
,在上是減函數(shù),所以,
即,又時,;時,,故在
上有兩個變號的零點,從而函數(shù)有兩個極值點,所以.
【點晴】
本題考查利用導數(shù)研究函數(shù)的極值、證明不等式的問題,考查學生的邏輯推理能力,轉(zhuǎn)化與化歸的思想,是一道中檔題.
科目:高中數(shù)學 來源: 題型:
【題目】某醫(yī)藥公司研發(fā)一種新的保健產(chǎn)品,從生產(chǎn)的一批產(chǎn)品中抽取200盒作為樣本,測量產(chǎn)品的一項質(zhì)量指標值,該指標值越高越好.由測量結(jié)果得到如下頻率分布直方圖:
(Ⅰ)求,并試估計這200盒產(chǎn)品的該項指標的平均值;
(Ⅱ)國家有關部門規(guī)定每盒產(chǎn)品該項指標值不低于150均為合格,且按指標值的從低到高依次分為:合格、優(yōu)良、優(yōu)秀三個等級,其中為優(yōu)良,不高于185為合格,不低于215為優(yōu)秀.用樣本的該項質(zhì)量指標值的頻率代替產(chǎn)品的該項質(zhì)量指標值的概率.
①求產(chǎn)品該項指標值的優(yōu)秀率;
②現(xiàn)從這批產(chǎn)品中隨機抽取3盒,求其中至少有1盒該項質(zhì)量指標值為優(yōu)秀的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為迎接2022年北京冬季奧運會,普及冬奧知識,某校開展了“冰雪答題王”冬奧知識競賽活動.現(xiàn)從參加冬奧知識競賽活動的學生中隨機抽取了100名學生,將他們的比賽成績(滿分為100分)分為6組:,得到如圖所示的頻率分布直方圖.
(Ⅰ)求的值;
(Ⅱ)記表示事件“從參加冬奧知識競賽活動的學生中隨機抽取一名學生,該學生的比賽成績不低于80分”,估計的概率;
(Ⅲ)在抽取的100名學生中,規(guī)定:比賽成績不低于80分為“優(yōu)秀”,比賽成績低于80分為“非優(yōu)秀”.請在答題卡上將列聯(lián)表補充完整,并判斷是否有的把握認為“比賽成績是否優(yōu)秀與性別有關”?
參考公式及數(shù)據(jù):,.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國改革開放以來經(jīng)濟發(fā)展迅猛,某一線城市的城鎮(zhèn)居民2012~2018年人均可支配月收入散點圖如下(年份均用末位數(shù)字減1表示).
(1)由散點圖可知,人均可支配月收入y(萬元)與年份x之間具有較強的線性相關關系,試求y關于x的回歸方程(系數(shù)精確到0.001),依此相關關系預測2019年該城市人均可支配月收入;
(2)在2014~2018年的五個年份中隨機抽取兩個數(shù)據(jù)作樣本分析,求所取的兩個數(shù)據(jù)中,人均可支配月收入恰好有一個超過1萬元的概率.
注:,,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2020年新年伊始,新型冠狀病毒來勢洶洶,疫情使得各地學生在寒假結(jié)束之后無法返校,教育部就此提出了線上教學和遠程教學,停課不停學的要求也得到了家長們的贊同.各地學校開展各式各樣的線上教學,某地學校為了加強學生愛國教育,擬開設國學課,為了了解學生喜歡國學是否與性別有關,該學校對100名學生進行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡國學 | 不喜歡國學 | 合計 | |
男生 | 20 | 50 | |
女生 | 10 | ||
合計 | 100 |
(1)請將上述列聯(lián)表補充完整,并判斷能否在犯錯誤的概率不超過0.001的前提下認為喜歡國學與性別有關系?
(2)針對問卷調(diào)查的100名學生,學校決定從喜歡國學的人中按分層抽樣的方法隨機抽取6人成立國學宣傳組,并在這6人中任選2人作為宣傳組的組長,設這兩人中女生人數(shù)為,求的分布列和數(shù)學期望.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下面使用類比推理,得到的結(jié)論正確的是( )
A. 直線,若,則.類比推出:向量,,,若∥,∥,則∥.
B. 三角形的面積為,其中,,為三角形的邊長,為三角形內(nèi)切圓的半徑,類比推出,可得出四面體的體積為,(,,,分別為四面體的四個面的面積,為四面體內(nèi)切球的半徑)
C. 同一平面內(nèi),直線,若,則.類比推出:空間中,直線,若,則.
D. 實數(shù),若方程有實數(shù)根,則.類比推出:復數(shù),若方程有實數(shù)根,則.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】把正整數(shù)按一定規(guī)律排成了如圖所示的三角形數(shù)表
設是位于這個三角形數(shù)表中從上到下數(shù)第行、從左到右數(shù)第個數(shù),如,若,則____
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com