3.已知在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,若cosA=$\frac{7}{8}$,a=2,3sinC=4sinB.
(Ⅰ)求b,c的值;
(Ⅱ)若等差數(shù)列{an}中a1=a,a2=b.
(。┣髷(shù)列{an}的通項(xiàng)公式;
(ⅱ)設(shè)bn=(-1)nan,求數(shù)列{bn}的前n項(xiàng)和Tn

分析 (Ⅰ)根據(jù)正弦定理和余弦定理,即可求出b,c的值.
(Ⅱ)(。┰O(shè)等差數(shù)列{an}公差為d,由題有d=a2-a1=1,從而an=n+1.
(ⅱ)bn=(-1)nan=(-1)n(n+1),分類(lèi)討論即可求出.

解答 解:(Ⅰ)△ABC中  3sinC=4sinB由正弦定理可得:3c=4b.
由余弦定理得到${a^2}={b^2}+{c^2}-2bccosA=\frac{9}{16}{c^2}+{c^2}-2•\frac{3c}{4}•c•\frac{7}{8}=\frac{c^2}{4}$,
又a=2,所以c=4,b=3.
(Ⅱ)(。┰O(shè)等差數(shù)列{an}公差為d,由題有d=a2-a1=1,
從而an=n+1.
(ⅱ)bn=(-1)nan=(-1)n(n+1),
當(dāng)n為偶數(shù)時(shí):${T_n}=(-2+3)+(-4+5)-…+(-n+n+1)=\frac{n}{2}$.
當(dāng)n為奇數(shù)時(shí):${T_n}=(-2+3)+(-4+5)-…+(-(n-1)+n)-(n+1)=\frac{n-1}{2}-(n+1)=-\frac{n+3}{2}$.
所以Tn=$\left\{\begin{array}{l}{\frac{n}{2},n為偶數(shù)}\\{-\frac{n+3}{2},n為奇數(shù)}\end{array}\right.$

點(diǎn)評(píng) 本題考查了正弦定理和余弦定理,以及等差數(shù)列的通項(xiàng)公式和數(shù)列的前n項(xiàng)和公式,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.等比數(shù)列{an}的前n項(xiàng)和Sn=2n+6-a,數(shù)列{bn}滿(mǎn)足bn=$\frac{1}{n}(log_2{a_1}+log_2{a_2}+…+log_2{a_n})$(n∈N*).
(1)求a的值及{an}的通項(xiàng)公式;
(2)求數(shù)列$\left\{{\frac{1}{{{b_n}•{b_{n+1}}}}}\right\}$的前n項(xiàng)和;
(3)求數(shù)列$\left\{{\frac{a_n}{b_n}}\right\}$的最小項(xiàng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知命題p:y=sin(x-$\frac{π}{2}}$)在(0,π)上是減函數(shù);命題q:“a=$\sqrt{3}$”是“直線(xiàn)x=$\frac{π}{6}$為曲線(xiàn)f(x)=sinx+acosx的一條對(duì)稱(chēng)軸”的充要條件.則下列命題為真命題的是( 。
A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知數(shù)列{an}為等差數(shù)列,Sn為其前n項(xiàng)和,且a2=4,S5=30,數(shù)列{bn}滿(mǎn)足b1+2b2+…+nbn=an
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求證:b1b2+b2b3+…+bnbn+1<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,且Sn=n(n+1)(n∈N+)數(shù)列{bn}滿(mǎn)足an=$\frac{_{1}}{3+1}$+$\frac{_{2}}{{3}^{2}+1}$+$\frac{_{3}}{{3}^{3}+1}$+…+$\frac{_{n}}{{3}^{n}+1}$
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)令cn=$\frac{{a}_{n}_{n}}{4}$(n∈N+),求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知等比數(shù)列{an}滿(mǎn)足a1=2,a1+a3+a5=14,則$\frac{1}{a_1}$+$\frac{1}{a_3}$+$\frac{1}{a_5}$=( 。
A.$\frac{7}{8}$B.$\frac{7}{4}$C.$\frac{13}{9}$D.$\frac{13}{18}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(n)(n∈N+)滿(mǎn)足f(n)=$\left\{{\begin{array}{l}{n-3,n≥100}\\{f[f(n+5)],n<100}\end{array}}$,則f(1)=( 。
A.97B.98C.99D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.函數(shù)f(x)=$\frac{{ln({2x-{x^2}})}}{x-1}$的定義域?yàn)椋?,1)∪(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知二次函數(shù)f(x)=ax2+bx+c的圖象過(guò)A(x1,y1)、B(x2,y2)兩點(diǎn),且滿(mǎn)足a2+(y1+y2)a+y1y2=0.
(1)證明y1=-a或y2=-a;
(2)證明函數(shù)f(x)的圖象必與x軸有兩個(gè)交點(diǎn);
(3)若關(guān)于x的不等式f(x)>0的解為x<n或x>m(n<m<0),解關(guān)于x的不等式cx2-bx+a>0.

查看答案和解析>>

同步練習(xí)冊(cè)答案