13.已知二次函數(shù)f(x)=ax2+bx+c的圖象過A(x1,y1)、B(x2,y2)兩點,且滿足a2+(y1+y2)a+y1y2=0.
(1)證明y1=-a或y2=-a;
(2)證明函數(shù)f(x)的圖象必與x軸有兩個交點;
(3)若關(guān)于x的不等式f(x)>0的解為x<n或x>m(n<m<0),解關(guān)于x的不等式cx2-bx+a>0.

分析 (1)由題知a2+(y1+y2)a+y1y2=0解得y1或y2即可;
(2)討論a>0,函數(shù)為開口向上的拋物線,a<0時函數(shù)圖象開口向下,由(2)得圖象上的點A、B的縱坐標(biāo)大于小于0得到與x軸有兩個交點即可;
(3)根據(jù)已知不等式的解集得到a的符號且可得ax2+bx+c=0的兩根為m,n,然后利用根與系數(shù)的關(guān)系化簡不等式求出解集即可.

解答 解:(1)證明:∵a2+(y1+y2)a+y1y2=0,
∴(a+y1)(a+y2)=0,得y1=-a或y2=-a.
(2)證明:當(dāng)a>0時,二次函數(shù)f(x)的圖象開口向上,圖象上的點A、B的縱坐標(biāo)至少有一個為-a且小于零,
∴圖象與x軸有兩個交點.
當(dāng)a<0時,二次函數(shù)f(x)的圖象開口向下,圖象上的點A、B的縱坐標(biāo)至少有一個為-a且大于零,
∴圖象與x軸有兩個交點.
故二次函數(shù)f(x)的圖象與x軸有兩個不同的交點.
(3)∵ax2+bx+c>0的解集為{x|x>m或x<n,n<m<0}.
根據(jù)一元二次不等式大于0取兩邊,從而可判定a>0,
并且可得ax2+bx+c=0的兩根為m,n,
∴$\left\{\begin{array}{l}{m+n=-\frac{a}}\\{m•n=\frac{c}{a}>0}\end{array}\right.$,∴a>0,
∴$\frac{m+n}{m•n}$=-$\frac{a}$•$\frac{a}{c}$=-$\frac{c}$.
而cx2-bx+a>0?x2-$\frac{c}$x+$\frac{a}{c}$>0?x2+( $\frac{m+n}{mn}$)x+$\frac{1}{mn}$>0?(x+$\frac{1}{m}$)(x+$\frac{1}{n}$)>0,
又∵n<m<0,∴-$\frac{1}{n}$<-$\frac{1}{m}$,∴x>-$\frac{1}{m}$或x<-$\frac{1}{n}$.
故不等式cx2-bx+a>0的解集為{x|x>-$\frac{1}{m}$或x<-$\frac{1}{n}$}.

點評 考查學(xué)生函數(shù)與方程的綜合運用能力,以及一元二次方程根與系數(shù)關(guān)系的靈活運用,不等式取解集方法的運用能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知在△ABC中,角A、B、C的對邊分別為a、b、c,若cosA=$\frac{7}{8}$,a=2,3sinC=4sinB.
(Ⅰ)求b,c的值;
(Ⅱ)若等差數(shù)列{an}中a1=a,a2=b.
(ⅰ)求數(shù)列{an}的通項公式;
(ⅱ)設(shè)bn=(-1)nan,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知雙曲線C的左右焦點分別為F1、F2,且F2恰為拋物線y2=8x的焦點.設(shè)A為雙曲線C與該拋物線的一個交點,若△AF1F2是以AF1的底邊的等腰三角形,則雙曲線C的離心率為( 。
A.1+$\sqrt{3}$B.1+$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)復(fù)數(shù)z=$\frac{1-i}{1+i}$(i為虛數(shù)單位),則z=( 。
A.iB.-iC.2iD.-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知遞增數(shù)列{an}、{bn}分別滿足:
a1=1,$\sqrt{n}$an+1=$\sqrt{n+1}$an,b1=1,$_{n+1}^{2}$+$_{n}^{2}$+1=2(bn+1bn+bn+1+bn),(n∈N*).
(1)求數(shù)列{an}、{bn}的通項公式;
(2)若cn=$\frac{{a}_{n}}{_{n}}$,Sn為數(shù)列{cn}的前n項和,求證:Sn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.定義函數(shù)f(x)如下:對于實數(shù)x,如果存在整數(shù)m,使得|x-m|<$\frac{1}{2}$,則f(x)=m,則下列結(jié)論:
(1)f(x)是實數(shù)R上的遞增函數(shù);
(2)f(x)是周期為1的函數(shù);
(3)f(x)是奇函數(shù);
(4)函數(shù)f(x)的圖象與直線y=x有且僅有一個交點,
則正確的結(jié)論的序號是(3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在等差數(shù)列{an}中,a1=4,公差d≠0,且a1,a7,a10成等比數(shù)列,若該數(shù)列前n項和Sn=11,試確定項數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知a,b為空間兩條不重合的直線,α,β為空間兩個不重合的平面,則以下結(jié)論正確的是( 。
A.若α⊥β,a?α,則a⊥βB.若α⊥β,a⊥β,則a∥αC.若a?α,a∥β,則α∥βD.若a?α,a⊥β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標(biāo)系xOy中,已知射線OA:x-y=0(x≥0),OB:x+2y=0(x≥0),過點P(1,0)作直線分別交射線OA,OB于點A,B,AB的中點為P.
(1)求直線AB的方程;
(2)過點C(6,-1)作直線l,使得A,B兩點到直線l的距離相等,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案