已知圓C:x2+y2+x-6y+m=0和直線l:x+y-3=0
(Ⅰ)當(dāng)圓C與直線l相切時,求圓C的方程;
(Ⅱ)若圓C與直線l交于P、Q兩點(diǎn),是否存在m,使以PQ為直徑的圓經(jīng)過原點(diǎn)O?
分析:(Ⅰ)由圓C與直線l相切,知R=d=
|-
1
2
+3-3|
2
=
1
2
2
,由此能求出所求圓的方程.
(Ⅱ)假設(shè)存在m使以PQ為直徑的圓經(jīng)過原點(diǎn)O,則,設(shè)P(x1,y1),Q(x2,y2),聯(lián)立
x2+y2+x-6y+m=0
x+y-3=0
,得2x2+x+m-9=0,由此能推導(dǎo)出存在m=-
3
2
,使以PQ為直徑的圓經(jīng)過原點(diǎn)O.
解答:解:(Ⅰ)∵圓C:x2+y2+x-6y+m=0,
∴圓心C(-
1
2
,3),
∵圓C與直線l相切,
R=d=
|-
1
2
+3-3|
2
=
1
2
2
,
故所求圓的方程為:(x+
1
2
)2+(y-3)2=
1
8

(Ⅱ)假設(shè)存在m使以PQ為直徑的圓經(jīng)過原點(diǎn)O,
則設(shè)P(x1,y1),Q(x2,y2),
聯(lián)立
x2+y2+x-6y+m=0
x+y-3=0
,
得2x2+x+m-9=0,
∵△=1-8(m-9)>0,
m<
73
8
,(8分)
OP⊥OQ?
OP
OQ
=x1x2+y1y2=x1x2+(3-x1)(3-x2)=2x1x2-3(x1+x2)+9

=m-9+
3
2
+9=0⇒m=
3
2
,
且符合m<
73
8
,
∴存在m=-
3
2
,使以PQ為直徑的圓經(jīng)過原點(diǎn)O.
點(diǎn)評:本題考查直線與圓的性質(zhì)的綜合應(yīng)用,考查運(yùn)算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.對數(shù)學(xué)思維的要求比較高,有一定的探索性.綜合性強(qiáng),難度大,是高考的重點(diǎn).解題時要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2-6x-4y+8=0.以圓C與坐標(biāo)軸的交點(diǎn)分別作為雙曲線的一個焦點(diǎn)和頂點(diǎn),則適合上述條件雙曲線的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)一個圓與x軸相切,圓心在直線3x-y=0上,且被直線x-y=0所截得的弦長為2
7
,求此圓方程.
(2)已知圓C:x2+y2=9,直線l:x-2y=0,求與圓C相切,且與直線l垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•普陀區(qū)一模)如圖,已知圓C:x2+y2=r2與x軸負(fù)半軸的交點(diǎn)為A.由點(diǎn)A出發(fā)的射線l的斜率為k,且k為有理數(shù).射線l與圓C相交于另一點(diǎn)B.
(1)當(dāng)r=1時,試用k表示點(diǎn)B的坐標(biāo);
(2)當(dāng)r=1時,試證明:點(diǎn)B一定是單位圓C上的有理點(diǎn);(說明:坐標(biāo)平面上,橫、縱坐標(biāo)都為有理數(shù)的點(diǎn)為有理點(diǎn).我們知道,一個有理數(shù)可以表示為
qp
,其中p、q均為整數(shù)且p、q互質(zhì))
(3)定義:實(shí)半軸長a、虛半軸長b和半焦距c都是正整數(shù)的雙曲線為“整勾股雙曲線”.
當(dāng)0<k<1時,是否能構(gòu)造“整勾股雙曲線”,它的實(shí)半軸長、虛半軸長和半焦距的長恰可由點(diǎn)B的橫坐標(biāo)、縱坐標(biāo)和半徑r的數(shù)值構(gòu)成?若能,請嘗試探索其構(gòu)造方法;若不能,試簡述你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•瀘州一模)已知圓C:x2+y2=r2(r>0)與拋物線y2=40x的準(zhǔn)線相切,若直線l:
x
a
y
b
=1
與圓C有公共點(diǎn),且公共點(diǎn)都為整點(diǎn)(整點(diǎn)是指橫坐標(biāo).縱坐標(biāo)都是整數(shù)的點(diǎn)),那么直線l共有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2=4與直線L:x+y+a=0相切,則a=( 。

查看答案和解析>>

同步練習(xí)冊答案