【題目】已知函數(shù).
(1)若在上的最小值為,求的值;
(2)若在上恒成立,求的取值范圍.
【答案】(1) (2) a≥-1
【解析】試題分析:(1)求出通過①若a≥-1,判斷單調性求解最值;②若a≤-e,③若-e<a<-1,求出函數(shù)的最值,即可得到a的值;
(2)化簡表達式為:a>.令g(x)= ,求出h(x)=g′(x)=1+lnx-3x2,求出導數(shù),判斷函數(shù)的單調性,求出函數(shù)的最值,即可推出結果.
試題解析:
(1) f′(x)=.
①若a≥-1,則x+a≥0,即f′(x)≥0在[1,e]上恒成立,
此時f(x)在[1,e]上為增函數(shù),∴f(x)min=f(1)=-a=,∴a=-(舍去).
②若a≤-e,則x+a≤0,即f′(x)≤0在[1,e]上恒成立,
此時f(x)在[1,e]上為減函數(shù),∴f(x)min=f(e)=1-=,∴a=-(舍去).
③若-e<a<-1,令f′(x)=0得x=-a,
當1<x<-a時,f′(x)<0,∴f(x)在(1,-a)上為減函數(shù);當-a<x<e時,f′(x)>0,∴f(x)在(-a,e)上為增函數(shù),
∴f(x)min=f(-a)=ln(-a)+1=,∴a=-.綜上所述,a=-.
(2)∵f(x)<x2,∴ln x-<x2.又x>0,∴a>xln x-x3.令g(x)=xln x-x3,h(x)=g′(x)=1+ln x-3x2,h′(x)=-6x=.∵x∈(1,+∞)時,h′(x)<0,∴h(x)在(1,+∞)上是減函數(shù).
∴h(x)<h(1)=-2<0,即g′(x)<0,∴g(x)在(1,+∞)上也是減函數(shù).g(x)<g(1)=-1,
∴當a≥-1時,f(x)<x2在(1,+∞)上恒成立.
科目:高中數(shù)學 來源: 題型:
【題目】【2018貴州遵義市高三上學期第二次聯(lián)考】設拋物線的準線與軸交于,拋物線的焦點為,以為焦點,離心率的橢圓與拋物線的一個交點為;自引直線交拋物線于兩個不同的點,設.
(Ⅰ)求拋物線的方程和橢圓的方程;
(Ⅱ)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】無窮數(shù)列滿足: 為正整數(shù),且對任意正整數(shù), 為前項, , , 中等于的項的個數(shù).
(Ⅰ)若,請寫出數(shù)列的前7項;
(Ⅱ)求證:對于任意正整數(shù),必存在,使得;
(Ⅲ)求證:“”是“存在,當時,恒有 成立”的充要條件。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】據(jù)中國日報網(wǎng)報道:2017年11月13日,TOP500發(fā)布的最新一期全球超級計算機500強榜單顯示,中國超算在前五名中占據(jù)兩席.其中超算全球第一“神威·太湖之光”完全使用了國產(chǎn)品牌處理器.為了了解國產(chǎn)品牌處理器打開文件的速度,某調查公司對兩種國產(chǎn)品牌處理器進行了12次測試,結果如下:(數(shù)值越小,速度越快,單位是MIPS)
(Ⅰ)從品牌的12次測試中,隨機抽取一次,求測試結果小于7的概率;
(Ⅱ)從12次測試中,隨機抽取三次,記為品牌的測試結果大于品牌的測試結果的次數(shù),求的分布列和數(shù)學期望;
(Ⅲ)經(jīng)過了解,前6次測試是打開含有文字與表格的文件,后6次測試時打開含有文字與圖片的文件.請你依據(jù)表中數(shù)據(jù),運用所學的統(tǒng)計知識,對這兩種國產(chǎn)品牌處理器打開文件的速度進行評價.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,已知曲線的參數(shù)方程為(為參數(shù)),點是曲線上的一動點,以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,直線的方程為 .
(Ⅰ)求線段的中點的軌跡的極坐標方程;
(Ⅱ)求曲線上的點到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖在棱錐中, 為矩形, 面, , 與面成角, 與面成角.
(1)在上是否存在一點,使面,若存在確定點位置,若不存在,請說明理由;
(2)當為中點時,求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com