分析 由已知中集合A={x|(x-2)(x-3a-1)<0},集合B={x|(x-2a)(x-a2-1)<0},我們先對(duì)a進(jìn)行分類討論后,求出集合A,B,再由B⊆A,我們易構(gòu)造出一個(gè)關(guān)于a的不等式組,解不等式組,即可得到實(shí)數(shù)a的取值范圍
解答 (Ⅰ)解:當(dāng)a=-2時(shí),A={x|-5<x<2},B={x|-4<x<5},
∴A∪B={x|-5<x<5}.
(Ⅱ)∵B={x|2a<x<a2+1}
當(dāng)$a<\frac{1}{3}$時(shí),2>3a+1,A={x|3a+1<x<2},--------(6分)
要使B⊆A必須
此時(shí)a=-1,
當(dāng) $a=\frac{1}{3}$時(shí),A=ϕ,使 B⊆A的a不存在;-----------(10分)
當(dāng) $a>\frac{1}{3}$ 時(shí),2<3a+1,A={x|2<x<3a+1}要使B⊆A
必須 $\left\{\begin{array}{l}{2a≥2}\\{{a}^{2}+1≤3a+1}\end{array}\right.$,
故 1≤a≤3.----------------------------------------------------------(12分)
綜上可知,使的實(shí)數(shù)a的取值范圍為[1,3]∪{-1}.-----(13分)
點(diǎn)評(píng) 本題考查集合的基本運(yùn)算,集合關(guān)系中的參數(shù)取值問(wèn)題,考查計(jì)算能力,分類討論思想的應(yīng)用
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{4}{5}$ | B. | $-\frac{3}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | n∥α | B. | n∥α或n?α | C. | n?α或n與α不平行 | D. | n?α |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | “?x∈R,x2≥x”的否定為“?x∉R,x2≥x” | |
B. | 命題“若x=1,則x2=1”逆命題 | |
C. | “若$\sqrt{3}x(x≠0)$是有理數(shù),則x為無(wú)理數(shù)”的逆否命題 | |
D. | “x<-1”是“x2-1>0”的必要不充分條件條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | $\frac{25}{2}$ | C. | 25 | D. | 50 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com