19.已知函數(shù)y=f(x)對(duì)任意自變量x都有f(x+1)=f(1-x),且函數(shù)f(x)在[1,+∞)上單調(diào).若數(shù)列{an}是公差不為0的等差數(shù)列,且f(a6)=f(a20),則{an}的前25項(xiàng)之和為( 。
A.0B.$\frac{25}{2}$C.25D.50

分析 由已知得函數(shù)f(x)圖象關(guān)于直線x=1對(duì)稱,從而得到a6+a20=2,由此能求出結(jié)果.

解答 解:∵函數(shù)y=f(x)對(duì)任意自變量x都有f(x+1)=f(1-x),
∴函數(shù)f(x)圖象關(guān)于直線x=1對(duì)稱,
又函數(shù)f(x)在[1,+∞)上單調(diào),
數(shù)列{an}是公差不為0的等差數(shù)列,且f(a6)=f(a20),
∴a6+a20=2,
∴S25=$\frac{25}{2}({a}_{1}+{a}_{25})$=$\frac{25}{2}({a}_{6}+{a}_{20})$=$\frac{25}{2}×2$=25.
故選:C.

點(diǎn)評(píng) 本題考查等差數(shù)列的前25項(xiàng)之和的求法,是中檔題,注意函數(shù)性質(zhì)和等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列說(shuō)法正確的是( 。
A.命題“?x0∈R,x02+x0+2013>0”的否定是“?x∈R,x2+x+2013<0”
B.命題p:函數(shù)f(x)=x2-2x僅有兩個(gè)零點(diǎn),則命題p是真命題
C.函數(shù)$f(x)=\frac{1}{x}$在其定義域上是減函數(shù)
D.給定命題p、q,若“p且q”是真命題,則?p是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知集合A={x|(x-2)[x-(3a+1)]<0},B={x|2a<x<a2+1}.
(Ⅰ)當(dāng)a=-2時(shí),求A∪B;
(Ⅱ)求使B⊆A的實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知直線$l:y=\sqrt{3}x+2$與圓O:x2+y2=4相交于A,B兩點(diǎn),則|AB|=$2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知定義在R上的函數(shù)f(x)、g(x)滿足$\frac{f(x)}{g(x)}={a^x}$,且f′(x)g(x)>f(x)g′(x),$\frac{f(1)}{g(1)}+\frac{f(-1)}{g(-1)}=\frac{10}{3}$,若cn=$\frac{f(n)}{g(n)}$,則數(shù)列{ncn}的前n項(xiàng)和Sn=$\frac{3+(2n-1)•{3}^{n+1}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖,閱讀程序框圖,若輸出的S的值等于55,那么在程序框圖中的判斷框內(nèi)應(yīng)填寫的條件是( 。 
A.i>8B.i>9C.i>10D.i>11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知三棱錐O-ABC中OA、OB、OC兩兩垂直,OC=3,OA=x,OB=y,若x+y=4,則三棱錐體積的最大值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.三個(gè)數(shù)a=30.2,b=0.23,c=log0.23的大小關(guān)系為( 。
A.c<a<bB.b<a<cC.a<b<cD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{2x+1}{x+1}$,判斷函數(shù)在區(qū)間[1,4]上的最大值與最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案