(14分)在直角坐標系中橢圓:的左、右焦點分別為、.其中也是拋物線:的焦點,點為與在第一象限的交點,且.
(1)求的方程;(6分)
(2)平面上的點滿足,直線∥,且與交于、兩點,若,求直線的方程. (8分)
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分) 已知圓過橢圓的兩焦點,與橢圓有且僅有兩個公共點;直線與圓相切 ,與橢圓相交于兩點記
(1)求橢圓的方程;
(2)求的取值范圍;
(3)求的面積S的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)
已知橢圓,斜率為的直線交橢圓于兩點,且點在直線的上方,
(1)求直線與軸交點的橫坐標的取值范圍;
(2)證明:的內(nèi)切圓的圓心在一條直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)雙曲線C:-y2=1的左、右頂點分別為A1、A2,垂直于x軸的直線m與雙曲線C交于不同的兩點P、Q.
(1)若直線m與x軸正半軸的交點為T,且·=1,求點T的坐標;
(2)求直線A1P與直線A2Q的交點M的軌跡E的方程;
(3)過點F(1,0)作直線l與(2)中的軌跡E交于不同的兩點A、B,設(shè)=λ·,若λ∈[-2,-1],求|+|(T為(1)中的點)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓O:,點O為坐標原點,一條直線:與圓O相切并與橢圓交于不同的兩點A、B
(1)設(shè),求的表達式;
(2)若,求直線的方程;
(3)若,求三角形OAB面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線C的方程C:y2 ="2" p x(p>0)過點A(1,-2).
(I)求拋物線C的方程,并求其準線方程;
(II)是否存在平行于OA(O為坐標原點)的直線l,使得直線l與拋物線C有公共點,且直線
OA與l的距離等于?若存在,求出直線l的方程;若不存在,說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分) 在直角坐標系中,點到點,的距離之和是,點的軌跡是,直線與軌跡交于不同的兩點和.⑴求軌跡的方程;⑵是否存在常數(shù),?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com