已知直線(xiàn)l:  y="x-2" 與拋物線(xiàn)y2=2x相交于兩點(diǎn)A、B,
(1)求證:OA⊥OB
(2)求線(xiàn)段AB的長(zhǎng)度

(1)見(jiàn)解析(2)2

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題12分)已知拋物線(xiàn)C:過(guò)點(diǎn)A
(1)求拋物線(xiàn)C 的方程;
(2)直線(xiàn)過(guò)定點(diǎn),斜率為,當(dāng)取何值時(shí),直線(xiàn)與拋物線(xiàn)C只有一個(gè)公共點(diǎn)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分13分)設(shè)橢圓的右焦點(diǎn)為,直線(xiàn)軸交于點(diǎn),若(其中為坐標(biāo)原點(diǎn)).
(1)求橢圓的方程;
(2)設(shè)是橢圓上的任意一點(diǎn),為圓的任意一條直徑(、為直徑的兩個(gè)端點(diǎn)),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分l0分)直角坐標(biāo)系xOy中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C的方程為,直線(xiàn)的方程為(t為參數(shù)),直線(xiàn)與曲線(xiàn)C的公共點(diǎn)為T(mén).
(Ⅰ)求點(diǎn)T的極坐標(biāo);(Ⅱ)過(guò)點(diǎn)T作直線(xiàn)被曲線(xiàn)C截得的線(xiàn)段長(zhǎng)為2,求直線(xiàn)的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

若拋物線(xiàn)y2=-2px(p>0)上有一點(diǎn)M,其橫坐標(biāo)為-9.它到焦點(diǎn)的距離為10,求拋物線(xiàn)方程和M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知A、B、C是橢圓上的三點(diǎn),其中點(diǎn)A的坐標(biāo)為,BC過(guò)橢圓m的中心,且

(1)求橢圓的方程;
(2)過(guò)點(diǎn)的直線(xiàn)l(斜率存在時(shí))與橢圓m交于兩點(diǎn)P,Q,
設(shè)D為橢圓m與y軸負(fù)半軸的交點(diǎn),且,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(14分)在直角坐標(biāo)系中橢圓的左、右焦點(diǎn)分別為、.其中也是拋物線(xiàn)的焦點(diǎn),點(diǎn)在第一象限的交點(diǎn),且.
(1)求的方程;(6分)
(2)平面上的點(diǎn)滿(mǎn)足,直線(xiàn),且與交于、兩點(diǎn),若,求直線(xiàn)的方程. (8分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分12分)已知在平面直角坐標(biāo)系中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為,且過(guò),設(shè)點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的動(dòng)點(diǎn),求線(xiàn)段中點(diǎn)的軌跡方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

標(biāo)準(zhǔn)方程下的橢圓的短軸長(zhǎng)為,焦點(diǎn),右準(zhǔn)線(xiàn)軸相交于點(diǎn),且,過(guò)點(diǎn)的直線(xiàn)和橢圓相交于點(diǎn).
(1)求橢圓的方程和離心率;
(2)若,求直線(xiàn)的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案