4.已知函數(shù)f(x)是R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=ex+x2,則不等式f(3-x2)>f(2x)的解集為( 。
A.(-3,1)B.(-1,3)C.(-∞,-3)∪(1,+∞)D.(-∞,-,1)∪(3,+∞)

分析 確定函數(shù)的單調(diào)性,不等式轉(zhuǎn)化為3-x2>2x,即可得出結(jié)論.

解答 解:∵當(dāng)x>0時(shí),f(x)=ex+x2,
∴當(dāng)x>0時(shí),函數(shù)單調(diào)遞增,
∵函數(shù)f(x)是R上的奇函數(shù),
∴函數(shù)f(x)在R上單調(diào)遞增,
∵f(3-x2)>f(2x),
∴3-x2>2x,
∴(x+3)(x-1)<0,
∴-3<x<1,
故選A.

點(diǎn)評(píng) 本題考查函數(shù)的奇偶性、單調(diào)性,考查不等式的解法,正確轉(zhuǎn)化是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合M={1,2,3,4,9},N={x|x∈M且$\sqrt{x}$∈M},則M∩N中的元素個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)與拋物線y2=4$\sqrt{5}$x的焦點(diǎn)重合,點(diǎn)P(2,1)在雙曲線的漸近線上,則ab的值為( 。
A.2B.$\sqrt{2}$C.8D.$\frac{10}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=loga(4-ax)在[0,2]上是單調(diào)遞減函數(shù),則實(shí)數(shù)a的取值范圍為( 。
A.(0,1)B.(1,+∞)C.(1,2)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=4tan(x+$\frac{π}{6}$)cos2(x+$\frac{π}{6}$)-1.
(Ⅰ)求f(x)的定義域與最小正周期;
(Ⅱ)討論f(x)在區(qū)間(0,$\frac{π}{3}$)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知全集U={0,1,2,3,4,5},集合A={1,2,3,5},B={2,4},則(∁UA)∪B為( 。
A.{0,2,3,4}B.{4}C.{1,2,4}D.{0,2,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求函數(shù)f(x)=x2+x在區(qū)間[x0,x0+△x]上的平均變化率,并求當(dāng)x0=1,△x=0.1時(shí)的平均變化率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=lnx+$\frac{a}{x}$-1,a∈R.
(1)若關(guān)于x的不等式f(x)≤$\frac{1}{2}$x-1在[1,+∞)上恒成立,求a的取值范圍;
(2)設(shè)函數(shù)g(x)=$\frac{f(x)}{x}$,若g(x)在[1,e2]上存在極值,求a的取值范圍,并判斷極值的正負(fù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足$2{a_n}={2^{n+1}}+2{a_{n-1}},({n≥2,n∈{N^*}})$,且a1=3.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求證:$\frac{1}{{{a_1}+1}}+\frac{1}{{{a_2}+1}}+…+\frac{1}{{{a_n}+1}}<\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案