17.如圖,已知直線l,m,n不共面,且l∥m∥n,A,B∈l,C∈m,D∈n,用反證法證明:AC與BD是異面直線.

分析 假設(shè)AC與BD共面,則A、B、C、D四點(diǎn)共面,從而推導(dǎo)出直線l,m,n共面,與已知直線l,m,n不共面相矛盾,由此能證明AC與BD是異面直線.

解答 證明:假設(shè)AC與BD共面,
則A、B、C、D四點(diǎn)共面,
∵A,B,D三點(diǎn)不共線,∴A、B、D三點(diǎn)確定一個(gè)平面,設(shè)為α,
∵A、C、D三點(diǎn)不共線,∴A、C、D三點(diǎn)確定一個(gè)平面,設(shè)為β,
∵A、B、C、D四點(diǎn)共面,
∴α,β是同一個(gè)平面,
∵l∥n,∴直線l,n共面于平面α,
∵l∥m,∴直線l,m共面于平面β,
∴直線l,m,n共面,與已知直線l,m,n不共面相矛盾,
∴假設(shè)不成立,∴AC與BD是異面直線.

點(diǎn)評(píng) 本題考查兩直線是異面直線的證明,是中檔題,解題時(shí)要認(rèn)真審題,注意空間基本定理及推論的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在某校開展的“陽光體育”系列活動(dòng)中,甲、乙兩班之間進(jìn)行了一次200米跑的團(tuán)體比賽.每個(gè)班各派出5名同學(xué)比賽,講每名同學(xué)的200米成績(jī)記錄以后(單位:秒,且已知每個(gè)成績(jī)都是整數(shù)),總用時(shí)少的班級(jí)獲勝,
成績(jī)記錄如表所示:
隊(duì)員編號(hào)12345
甲班成績(jī)3134332928
乙班成績(jī)273130X31
表格中的x∈[30,40)
(1)若x=36,從甲班的5名同學(xué)中任取3名,記這3人中用時(shí)少于乙隊(duì)平均用時(shí)的人數(shù)為隨機(jī)變量η,求η的分布列;
(2)若最終乙班獲勝,那么當(dāng)乙班同學(xué)的成績(jī)方差最大時(shí),x的取值是多少(直接寫出結(jié)果,不用證明)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知等差數(shù)列{an}的公差d≠0,若a2=5且a1,a3,a6成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足b1=0且對(duì)任意的n≥2,均有|bn-bn-1|=2${\;}^{{a}_{n}}$
①寫出b3所有可能的取值;
②若bk=2116,求k的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若不等式組$\left\{\begin{array}{l}{{x}^{2}-x-2>0}\\{2{x}^{2}+(5+2k)x+5k<0}\end{array}\right.$的整數(shù)解只有兩個(gè),則k的取值范圍是[-4,-3)∪(4,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)的定義域?yàn)镽滿足f(-x)=f(x),且圖象關(guān)于直線x=2對(duì)稱,若0≤x≤2時(shí),f(x)=$\frac{2x}{4{x}^{2}+1}$.
(1)求證:函數(shù)f(x)是周期函數(shù);
(2)求使f(x)=$\frac{1}{2}$在[0,2016]上的所有x的個(gè)數(shù),并求在[0,40]上的所有x值的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在三棱柱ABC-A1B1C1中已知AB=AC=AA1=2,∠BAA1=∠CAA1=60°,異面直線A1C1與BC成角為45°.
(1)求證:AA1⊥BC;
(2)求二面角B-AA1-C的余弦值;
(3)求直線A1B于平面A1AC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=|x|+1是( 。
A.在(0,+∞)上單調(diào)遞增的奇函數(shù)B.在(0,+∞)上單調(diào)遞減的奇函數(shù)
C.在(0,+∞)上單調(diào)遞增的偶函數(shù)D.在(0,+∞)上單調(diào)遞減的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖所示的四邊形ABCD,已知$\overrightarrow{AB}$=(6,1),$\overrightarrow{BC}$=(x,y),$\overrightarrow{CD}$=(-2,-3)
(1)若$\overrightarrow{BC}∥\overrightarrow{DA}$且-2≤x<1,求函數(shù)y=f(x)的值域;
(2)若$\overrightarrow{BC}∥\overrightarrow{DA}$且$\overrightarrow{AC}⊥\overrightarrow{BD}$,求x,y的值及四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)數(shù)列{an}是等差數(shù)列,且a4=-4,a9=4,Sn是數(shù)列{an}的前n項(xiàng)和,則( 。
A.S5<S6B.S5=S6C.S7=S5D.S7=S6

查看答案和解析>>

同步練習(xí)冊(cè)答案