設直線系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),對于下列四個命題:
A.M中所有直線均經過一個定點
B.存在定點P不在M中的任一條直線上
C.對于任意整數(shù)n(n≥3),存在正n邊形,其所有邊均在M中的直線上
D.M中的直線所能圍成的正三角形面積都相等
其中真命題的代號是________(寫出所有真命題的代號).
BC
分析:驗證發(fā)現(xiàn),直線系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π)表示圓x2+(y-2)2=1的切線的集合,
A.M中所有直線均經過一個定點,驗證直線方程是否能化為為l1+λl2形式,
B.存在定點P不在M中的任一條直線上,觀察直線的方程即可得到點的坐標.
C.對于任意整數(shù)n(n≥3),存在正n邊形,其所有邊均在M中的直線上,由直線系的幾何意義可判斷,
D.M中的直線所能圍成的正三角形面積都相等,由直線系的幾何意義可判斷
解答:驗證發(fā)現(xiàn),直線系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π)表示圓x2+(y-2)2=1的切線的集合,
A.M中所有直線均經過一個定點,由于本題中的直線不能轉化為l1+λl2形式,故不可能過一個定點
B.存在定點P不在M中的任一條直線上,觀察知點M(0,2)即符合條件,故B正確;
C.對于任意整數(shù)n(n≥3),存在正n邊形,其所有邊均在M中的直線上,由于圓的所有外切正多邊形的邊都是圓的切線,故C正確;
D.M中的直線所能圍成的正三角形面積都相等,由直線系的幾何意義知,這些線所圍成的正三角形面積大小不一定相等,故本命題不正確.
故答案為:BC
點評:本題考查直線系方程的應用,要明確直線系M中直線的性質,依據(jù)直線系M表示圓 x2+(y-2)2=1 的切線的集合,結合圖形,判斷各個命題的正確性.本題易因為觀察不知直線系所具有的幾何特征而導致后兩個命題的真假無法判斷,對問題進行深入分析是發(fā)現(xiàn)其意義的捷徑.