【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且a2+c2=b2﹣ac.
(1)求B的大;
(2)設∠BAC的平分線AD交BC于D,AD=2 ,BD=1,求cosC的值.

【答案】
(1)解:在△ABC中,∵a2+c2=b2﹣ac,即a2+c2﹣b2=﹣ac.

∴cosB= =﹣ =﹣ ,B∈(0,π),可得B=


(2)解:在△ABD中,由正弦定理可得: = ,

解得sin∠BAD= =

cos∠BAC=cos2∠BAD=1﹣2sin2∠BAD=1﹣×2× =

∴sin∠BAC= = =

∴cosC=cos(60°﹣∠BAC)= + =


【解析】(1)利用余弦定理可得:cosB=﹣ ,B∈(0,π),可得B.(2)在△ABD中,由正弦定理可得: = ,解得sin∠BAD.cos∠BAC=cos2∠BAD=1﹣2sin2∠BAD.可得sin∠BAC= .可得cosC=cos(60°﹣∠BAC).
【考點精析】本題主要考查了余弦定理的定義的相關知識點,需要掌握余弦定理:;;才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某學校一個生物興趣小組對學校的人工湖中養(yǎng)殖的某種魚類進行觀測研究,在飼料充足的前提下,興趣小組對飼養(yǎng)時間x(單位:月)與這種魚類的平均體重y(單位:千克)得到一組觀測值,如下表:

xi(月)

1

2

3

4

5

yi(千克)

0.5

0.9

1.7

2.1

2.8


(1)在給出的坐標系中,畫出關于x,y兩個相關變量的散點圖.
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出變量y關于變量x的線性回歸直線方程
(3)預測飼養(yǎng)滿12個月時,這種魚的平均體重(單位:千克)
(參考公式: =

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a>0,設命題p:函數(shù)y=ax在R上單調遞增;命題q:不等式ax2﹣ax+1>0對x∈R恒成立,若p且q為假,p或q為真,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在我國古代著名的數(shù)學專著《九章算術》里有﹣段敘述:今有良馬與駑馬發(fā)長安至齊,齊去長安一千一百二十五里,良馬初日行一百零三里,日增十三里:駑馬初日行九十七里,日減半里,良馬先至齊,復還迎駑馬,二馬相逢, 問:需日相逢.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】北京、張家港2022年冬奧會申辦委員會在俄羅斯索契舉辦了發(fā)布會,某公司為了競標配套活動的相關代言,決定對旗下的某商品進行一次評估.該商品原來每件售價為25元,年銷售8萬件.
(1)據(jù)市場調查,若價格每提高1元,銷售量將相應減少2000件,要使銷售的總收入不低于原收入,該商品每件定價最多為多少元?
(2)為了抓住申奧契機,擴大該商品的影響力,提高年銷售量.公司決定立即對該商品進行全面技術革新和營銷策略改革,并提高定價到x元.公司擬投入 萬作為技改費用,投入(50+2x)萬元作為宣傳費用.試問:當該商品改革后的銷售量a至少應達到多少萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時商品的每件定價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設α∈(0, ),滿足 sinα+cosα=
(1)求cos(α+ )的值;
(2)求cos(2α+ π)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=sin(2x+ )+ cos(2x+ ),則(
A.y=f(x)在(0, )單調遞增,其圖象關于直線x= 對稱
B.y=f(x)在(0, )單調遞增,其圖象關于直線x= 對稱
C.y=f(x)在(0, )單調遞減,其圖象關于直線x= 對稱
D.y=f(x)在(0, )單調遞減,其圖象關于直線x= 對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC是一個面積較大的三角形,點P是△ABC所在平面內(nèi)一點且 + +2 = ,現(xiàn)將3000粒黃豆隨機拋在△ABC內(nèi),則落在△PBC內(nèi)的黃豆數(shù)大約是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,已知B=45°,D是BC上一點,AD=5,AC=7,DC=3,求AB的長.

查看答案和解析>>

同步練習冊答案