【題目】為了增強(qiáng)學(xué)生的冬奧會(huì)知識(shí),弘揚(yáng)奧林匹克精神,北京市多所中小學(xué)校開展了模擬冬奧會(huì)各項(xiàng)比賽的活動(dòng).為了了解學(xué)生在越野滑輪和旱地冰壺兩項(xiàng)中的參與情況,在北京市中小學(xué)學(xué)校中隨機(jī)抽取了10所學(xué)校,10所學(xué)校的參與人數(shù)如下:

(Ⅰ)現(xiàn)從這10所學(xué)校中隨機(jī)選取2所學(xué)校進(jìn)行調(diào)查.求選出的2所學(xué)校參與越野滑輪人數(shù)都超過40人的概率;

(Ⅱ)現(xiàn)有一名旱地冰壺教練在這10所學(xué)校中隨機(jī)選取2所學(xué)校進(jìn)行指導(dǎo),記X為教練選中參加旱地冰壺人數(shù)在30人以上的學(xué)校個(gè)數(shù),求X的分布列和數(shù)學(xué)期望;

(Ⅲ)某校聘請(qǐng)了一名越野滑輪教練,對(duì)高山滑降、轉(zhuǎn)彎、八字登坡滑行這3個(gè)動(dòng)作進(jìn)行技術(shù)指導(dǎo).規(guī)定:這3個(gè)動(dòng)作中至少有2個(gè)動(dòng)作達(dá)到優(yōu),總考核記為優(yōu)”.在指導(dǎo)前,該校甲同學(xué)3個(gè)動(dòng)作中每個(gè)動(dòng)作達(dá)到優(yōu)的概率為0.1.在指導(dǎo)后的考核中,甲同學(xué)總考核成績(jī)?yōu)?/span>優(yōu)”.能否認(rèn)為甲同學(xué)在指導(dǎo)后總考核達(dá)到優(yōu)的概率發(fā)生了變化?請(qǐng)說明理由.

【答案】(Ⅰ)(Ⅱ)見解析,(Ⅲ)見解析

【解析】

(Ⅰ)記選出的兩所學(xué)校參與越野滑輪人數(shù)都超過40為事件S,從這10所學(xué)校中隨機(jī)選取2所學(xué)校進(jìn)行調(diào)查,可得基本事件總數(shù)為.參與越野滑輪人數(shù)超過40人的學(xué)校共4所,隨機(jī)選擇2所學(xué)校共種,利用古典概率計(jì)算公式即可得出概率.

(Ⅱ)X的所有可能取值為01,2,參加旱地冰壺人數(shù)在30人以上的學(xué)校共4.利用超幾何分布列計(jì)算公式即可得出.

(Ⅲ)答案不唯一.示例:雖然概率非常小,但是也可能發(fā)生,一旦發(fā)生,就有理由認(rèn)為指導(dǎo)后總考核達(dá)到優(yōu)的概率發(fā)生了變化.

(Ⅰ)記選出的兩所學(xué)校參與越野滑輪人數(shù)都超過40為事件S,現(xiàn)從這10所學(xué)校中隨機(jī)選取2所學(xué)校進(jìn)行調(diào)查,可得基本事件總數(shù)為.

參與越野滑輪人數(shù)超過40人的學(xué)校共4所,隨機(jī)選擇2所學(xué)校共種,

所以

(Ⅱ)X的所有可能取值為0,1,2,參加旱地冰壺人數(shù)在30人以上的學(xué)校共4.

,,.

X的分布列為:

X

0

1

2

P

.

(Ⅲ)答案不唯一.

答案示例1:可以認(rèn)為甲同學(xué)在指導(dǎo)后總考核為優(yōu)的概率發(fā)生了變化.理由如下:

指導(dǎo)前,甲同學(xué)總考核為優(yōu)的概率為:.

指導(dǎo)前,甲同學(xué)總考核為優(yōu)的概率非常小,一旦發(fā)生,就有理由認(rèn)為指導(dǎo)后總考核達(dá)到優(yōu)的概率發(fā)生了變化.

答案示例2:無法確定.理由如下:

指導(dǎo)前,甲同學(xué)總考核為優(yōu)的概率為:.

雖然概率非常小,但是也可能發(fā)生,所以,無法確定總考核達(dá)到優(yōu)的概率發(fā)生了變化.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓在左、右焦點(diǎn)分別為,上頂點(diǎn)為點(diǎn),若是面積為的等邊三角形.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)已知,是橢圓上的兩點(diǎn),且,求使的面積最大時(shí)直線的方程(為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,的中點(diǎn),.現(xiàn)將沿翻折至,得四棱錐.

1)證明:;

2)若,求直線與平面所成角的正切值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國(guó)詩詞大會(huì)的播出引發(fā)了全民讀書熱,某學(xué)校語文老師在班里開展了一次詩詞默寫比賽,班里40名學(xué)生得分?jǐn)?shù)據(jù)的莖葉圖如右圖,若規(guī)定得分不低于85分的學(xué)生得到“詩詞達(dá)人”的稱號(hào),低于85分且不低于70分的學(xué)生得到“詩詞能手”的稱號(hào),其他學(xué)生得到“詩詞愛好者”的稱號(hào).根據(jù)該次比賽的成績(jī)按照稱號(hào)的不同進(jìn)行分層抽樣抽選10名學(xué)生,則抽選的學(xué)生中獲得“詩詞能手”稱號(hào)的人數(shù)為(  )

A. 6B. 5C. 4D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)有兩個(gè)零點(diǎn),求滿足條件的最小正整數(shù)的值;

(3)若方程,有兩個(gè)不相等的實(shí)數(shù)根,比較與0的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓,離心率,且經(jīng)過拋物線的焦點(diǎn).若過點(diǎn)的直線斜率不等于零與橢圓交于不同的兩點(diǎn)EB、F之間,

求橢圓的標(biāo)準(zhǔn)方程;

求直線l斜率的取值范圍;

面積之比為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的方程為,則下列結(jié)論正確的是(

A.當(dāng)時(shí),曲線為橢圓,其焦距為

B.當(dāng)時(shí),曲線為雙曲線,其離心率為

C.存在實(shí)數(shù)使得曲線為焦點(diǎn)在軸上的雙曲線

D.當(dāng)時(shí),曲線為雙曲線,其漸近線與圓相切

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在點(diǎn),(1)處的切線方程為

1)求函數(shù)的解析式,并證明:

2)已知,且函數(shù)與函數(shù)的圖象交于,兩點(diǎn),且線段的中點(diǎn)為,,證明:(1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,點(diǎn)的極坐標(biāo),直線經(jīng)過點(diǎn),且傾斜角為.

1)寫出曲線的直角坐標(biāo)方程和直線的標(biāo)準(zhǔn)參數(shù)方程;

2)直線與曲線交于兩點(diǎn),直線的參數(shù)方程為t為參數(shù)),直線與曲線交于兩點(diǎn),求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案