【題目】已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓,離心率,且經(jīng)過(guò)拋物線的焦點(diǎn).若過(guò)點(diǎn)的直線斜率不等于零與橢圓交于不同的兩點(diǎn)EB、F之間,

求橢圓的標(biāo)準(zhǔn)方程;

求直線l斜率的取值范圍;

面積之比為,求的取值范圍.

【答案】1;(2;(3

【解析】

由題意離心率和橢圓的短軸上的頂點(diǎn)坐標(biāo),及之間的關(guān)系可得橢圓的標(biāo)準(zhǔn)方程;

設(shè)直線方程與橢圓聯(lián)立,用判別式大于零得有兩個(gè)交點(diǎn)時(shí)的斜率的范圍;

面積之比高相同即是的比,用橫坐標(biāo)的關(guān)系得出的取值范圍.

解:設(shè)橢圓的方程為,則,

拋物線的焦點(diǎn)為

解得,橢圓的標(biāo)準(zhǔn)方程為;

如圖,由題意知l的斜率存在且不為0,

設(shè)l方程為,

代入整理得:

,由,

;

設(shè),,則,則,

由此可得,且,

,即,

,

,解得,

,

面積之比的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線E的參數(shù)方程為為參數(shù)),以O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,直線,的極坐標(biāo)方程分別為,,交曲線E于點(diǎn)A,B交曲線E于點(diǎn)C,D.

1)求曲線E的普通方程及極坐標(biāo)方程;

2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在全面抗擊新冠肺炎疫情這一特殊時(shí)期,我市教育局提出“停課不停學(xué)”的口號(hào),鼓勵(lì)學(xué)生線上學(xué)習(xí).某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生數(shù)學(xué)成績(jī)與線上學(xué)習(xí)時(shí)間之間的相關(guān)關(guān)系,對(duì)高三年級(jí)隨機(jī)選取45名學(xué)生進(jìn)行跟蹤問(wèn)卷,其中每周線上學(xué)習(xí)數(shù)學(xué)時(shí)間不少于5小時(shí)的有19人,余下的人中,在檢測(cè)考試中數(shù)學(xué)平均成績(jī)不足120分的占,統(tǒng)計(jì)成績(jī)后得到如下列聯(lián)表:

分?jǐn)?shù)不少于120

分?jǐn)?shù)不足120

合計(jì)

線上學(xué)習(xí)時(shí)間不少于5小時(shí)

4

19

線上學(xué)習(xí)時(shí)間不足5小時(shí)

合計(jì)

45

1)請(qǐng)完成上面列聯(lián)表;并判斷是否有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績(jī)與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)”;

2)①按照分層抽樣的方法,在上述樣本中從分?jǐn)?shù)不少于120分和分?jǐn)?shù)不足120分的兩組學(xué)生中抽取9名學(xué)生,設(shè)抽到不足120分且每周線上學(xué)習(xí)時(shí)間不足5小時(shí)的人數(shù)是,求的分布列(概率用組合數(shù)算式表示);

②若將頻率視為概率,從全校高三該次檢測(cè)數(shù)學(xué)成績(jī)不少于120分的學(xué)生中隨機(jī)抽取20人,求這些人中每周線上學(xué)習(xí)時(shí)間不少于5小時(shí)的人數(shù)的期望和方差.

(下面的臨界值表供參考)

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在邊長(zhǎng)為4的菱形中,于點(diǎn),將沿折起到的位置,使,如圖2.

(1)求證:平面

(2)求二面角的余弦值;

(3)判斷在線段上是否存在一點(diǎn),使平面平面?若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了增強(qiáng)學(xué)生的冬奧會(huì)知識(shí),弘揚(yáng)奧林匹克精神,北京市多所中小學(xué)校開展了模擬冬奧會(huì)各項(xiàng)比賽的活動(dòng).為了了解學(xué)生在越野滑輪和旱地冰壺兩項(xiàng)中的參與情況,在北京市中小學(xué)學(xué)校中隨機(jī)抽取了10所學(xué)校,10所學(xué)校的參與人數(shù)如下:

(Ⅰ)現(xiàn)從這10所學(xué)校中隨機(jī)選取2所學(xué)校進(jìn)行調(diào)查.求選出的2所學(xué)校參與越野滑輪人數(shù)都超過(guò)40人的概率;

(Ⅱ)現(xiàn)有一名旱地冰壺教練在這10所學(xué)校中隨機(jī)選取2所學(xué)校進(jìn)行指導(dǎo),記X為教練選中參加旱地冰壺人數(shù)在30人以上的學(xué)校個(gè)數(shù),求X的分布列和數(shù)學(xué)期望;

(Ⅲ)某校聘請(qǐng)了一名越野滑輪教練,對(duì)高山滑降、轉(zhuǎn)彎、八字登坡滑行這3個(gè)動(dòng)作進(jìn)行技術(shù)指導(dǎo).規(guī)定:這3個(gè)動(dòng)作中至少有2個(gè)動(dòng)作達(dá)到優(yōu),總考核記為優(yōu)”.在指導(dǎo)前,該校甲同學(xué)3個(gè)動(dòng)作中每個(gè)動(dòng)作達(dá)到優(yōu)的概率為0.1.在指導(dǎo)后的考核中,甲同學(xué)總考核成績(jī)?yōu)?/span>優(yōu)”.能否認(rèn)為甲同學(xué)在指導(dǎo)后總考核達(dá)到優(yōu)的概率發(fā)生了變化?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.

(1)證明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在現(xiàn)代社會(huì)中,信號(hào)處理是非常關(guān)鍵的技術(shù),我們通過(guò)每天都在使用的電話或者互聯(lián)網(wǎng)就能感受到,而信號(hào)處理背后的“功臣”就是正弦型函數(shù).函數(shù)的圖象就可以近似的模擬某種信號(hào)的波形,則下列說(shuō)法正確的是( )

A.函數(shù)為周期函數(shù),且最小正周期為

B.函數(shù)為奇函數(shù)

C.函數(shù)的圖象關(guān)于直線對(duì)稱

D.函數(shù)的導(dǎo)函數(shù)的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】極坐標(biāo)系與直角坐標(biāo)系有相同的長(zhǎng)度單位,以原點(diǎn)為極點(diǎn),以軸正半軸為極軸,曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為為參數(shù),),射線,,與曲線交于(不包括極點(diǎn))三點(diǎn),

1)求證:;

2)當(dāng)時(shí),兩點(diǎn)在曲線上,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知傾斜角為的直線經(jīng)過(guò)拋物線的焦點(diǎn),與拋物線相交于兩點(diǎn),且.

1)求拋物線的方程;

2)求過(guò)點(diǎn)且與拋物線的準(zhǔn)線相切的圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案