設(shè)直線雙曲線,雙曲線的離心率為,交于兩點(diǎn),直線軸交于點(diǎn),且
(1)證明:;(2)求雙曲線的方程;(3)若點(diǎn)是雙曲線的右焦點(diǎn),是雙曲線上兩點(diǎn),且,求實(shí)數(shù)的取值范圍.
(Ⅰ)   (Ⅱ)   (Ⅲ)
(1)雙曲線的離心率為,,從而.雙曲線的方程可化為.    設(shè)
得:
則有    從而


(2),  
,由
    則
故雙曲線的方程為
(3)易知,設(shè).由得:
設(shè)直線的方程為.由得:
,消去得:
, ,  解得
當(dāng)時(shí),可求出
當(dāng)直線軸重合時(shí),可求出
的取值范圍是.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知過點(diǎn)A(0,1),且方向向量為,相交于M、N兩點(diǎn).
(1)求實(shí)數(shù)的取值范圍;      
(2)求證:;
(3)若O為坐標(biāo)原點(diǎn),且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分15分)已知拋物線上的一點(diǎn)(m,1)到焦點(diǎn)的距離為.點(diǎn)是拋物線上任意一點(diǎn)(除去頂點(diǎn)),過點(diǎn)的直線和拋物線交于點(diǎn),過點(diǎn)與的直線和拋物線交于點(diǎn).分別以點(diǎn),為切點(diǎn)的拋物線的切線交于點(diǎn)P′.

(I)求拋物線的方程;
(II)求證:點(diǎn)P′在y軸上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線的離心率為2,有一個(gè)焦點(diǎn)與橢圓的焦點(diǎn)重合,則m的值為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓的中心在原點(diǎn),長(zhǎng)軸AA1在x軸上.以A、A1為焦點(diǎn)的雙曲線交橢圓于C、D、D1、C1四點(diǎn),且|CD|=|AA1|.橢圓的一條弦AC交雙曲線于E,設(shè),當(dāng)時(shí),求雙曲線的離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直角坐標(biāo)系xoy中,角的始邊為x軸的非負(fù)半軸,終邊為射線l:y=x (x≥0).
(1)求的值;
(2)若點(diǎn)P,Q分別是角始邊、終邊上的動(dòng)點(diǎn),且PQ=4,求△POQ面積最大時(shí),點(diǎn)P,Q的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓A的圓心在曲線上,圓Ay軸相切,又與另一圓相外切,求圓A的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知a·b<0,方程y=ax+bbx2+ay2=ab所表示的曲線只能是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓為參數(shù))上的點(diǎn),求
的取值范圍;    ⑵的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案