如圖,橢圓的中心在原點,長軸AA
1在x軸上.以A、A
1為焦點的雙曲線交橢圓于C、D、D
1、C
1四點,且|CD|=
|AA
1|.橢圓的一條弦AC交雙曲線于E,設(shè)
,當(dāng)
時,求雙曲線的離心率e的取值范圍.
設(shè)A(-c,0),A
1(c,0),則
(其中c為雙曲線的半焦距,h為C、D到x軸的距離)
即E點坐標(biāo)為
設(shè)雙曲線的方程為
,將
代入方程,得
①
將
代入①式,整理得
消去
由于
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知向量
,動點
到定直線
的距離等于
,并且滿足
,其中
為坐標(biāo)原點,
為非負(fù)實數(shù).
(1)求動點
的軌跡方程
;
(2)若將曲線
向左平移一個單位,得曲線
,試判斷曲線
為何種類型;
(3)若(2)中曲線
為圓錐曲線,其離心率滿足
,當(dāng)
是曲線
的兩個焦點時,則圓錐曲線上恒存在點
,使得
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知點
在以原點為圓心的單位圓上運動,則點
的軌跡是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在直角坐標(biāo)系中,點A(-1,0),B(1,0),P(x,y)(
)。設(shè)
與x軸正方向的夾角分別為α、β、γ,若
。
(I)求點P的軌跡G的方程;
(II)設(shè)過點C(0,-1)的直線
與軌跡G交于不同兩點M、N。問在x軸上是否存在一點
,使△MNE為正三角形。若存在求出
值;若不存在說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖所示,動圓與定圓B:x
2+y
2-4y-32=0內(nèi)切且過定圓內(nèi)的一個定點A(0,-2),求動圓圓心P的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)直線
雙曲線
,雙曲線的離心率為
,
與
交于
兩點,直線
與
軸交于點
,且
(1)證明:
;(2)求雙曲線
的方程;(3)若點
是雙曲線
的右焦點,
是雙曲線上兩點,且
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
拋物線的焦點
在
軸上,
在拋物線上,且
,求拋物線的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若拋物線
的焦點與橢圓
的左焦點重合,則
p的值為
查看答案和解析>>