【題目】定義在上的函數(shù)滿足對任意,恒有,且不恒為0.

(1)求的值;

(2)試判斷的奇偶性,并加以證明;

(3)若,恒有,求滿足不等式的取值集合.

【答案】(1) ,;(2)詳見解析;(3) .

【解析】試題分析:本題為抽象函數(shù)問題,解決抽象函數(shù)的基本方法有兩種:一是賦值法,二是“打回原型”,賦值法是最常用的解題方法,巧妙的賦值可求出函數(shù)的特值,本題的第一步就是賦值法,發(fā)也可以判斷分別給x,y賦值1就可求出所求函數(shù)值,給y賦值可判斷函數(shù)的奇偶性,利用可以證明函數(shù)的單調(diào)性,借助函數(shù)的奇偶性和單調(diào)性以及特殊點特殊值可以模擬出函數(shù)的圖象,在此基礎(chǔ)上可以解不等式.

試題解析:

(1)令,得,∴,

,得,∴

(2)令,由可得,

,∴,

不恒為0,∴是偶函數(shù).

(3)若時,恒有 ,此時為增函數(shù),

,得

由(2)知,,∴,

又∵上為增函數(shù),∴,

的取值集合是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

(1)當(dāng)時,處取得極值,求函數(shù)的單調(diào)區(qū)間;

(2)若時,函數(shù)有兩個不同的零點,

①求的取值范圍;

②求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中, ,D是棱AC的中點,且.

(1)求證: ;

(2)求異面直線所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù),

(Ⅰ)討論的極值點的個數(shù);

(Ⅱ)若對于,總有.(i)求實數(shù)的范圍; (ii)求證:對于,不等式成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的中心在坐標原點,焦點在軸上,焦點到短軸端點的距離為2,離心率為.

(Ⅰ)求該橢圓的方程;

(Ⅱ)若直線與橢圓交于, 兩點且,是否存在以原點為圓心的定圓與直線相切?若存在求出定圓的方程;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)loga(1x)g(x)loga(1x),(a>0a1).

(1)設(shè)a2,函數(shù)f(x)的定義域為[363],f(x)的最值;

(2)求使f(x)g(x)>0x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直三棱柱, 分別是的中點, ,

(1)證明: .

(2)棱上是否存在一點,使得平面與平面所成銳二面角的余弦值為若存在,說明點的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)的圖象與x軸無交點,求a的取值范圍;

(2) 若函數(shù)[-1,1]上存在零點,求a的取值范圍;

(3)設(shè)函數(shù),當(dāng)時,若對任意的,總存在,使得,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓 過橢圓 ()的短軸端點, , 分別是圓與橢圓上任意兩點,且線段長度的最大值為3.

(Ⅰ)求橢圓的方程;

(Ⅱ)過點作圓的一條切線交橢圓, 兩點,求的面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案