已知點的坐標(biāo)為,且滿足.
(1)求當(dāng)時,點滿足的概率;
(2)求當(dāng)時,點滿足的概率.
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省英文學(xué)校高三下學(xué)期第一次月考理科數(shù)學(xué) 題型:解答題
.(本小題滿分14分)
已知橢圓、拋物線的焦點均在軸上,的中心和的頂點均為原點,從每條曲
線上取兩個點,將其坐標(biāo)記錄于下表中:
3 |
2 |
4 |
||
0 |
4 |
(Ⅰ)求的標(biāo)準(zhǔn)方程;
(Ⅱ)請問是否存在直線滿足條件:①過的焦點;②與交不同兩點且滿
足?若存在,求出直線的方程;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓的方程;
(2)若過點(2,0)的直線與橢圓相交于兩點,設(shè)為橢圓上一點,且滿(O為坐標(biāo)原點),當(dāng)< 時,求實數(shù)取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com