已知點(diǎn)的坐標(biāo)為,且滿足

(1)求當(dāng)時(shí),點(diǎn)滿足的概率;

(2)求當(dāng)時(shí),點(diǎn)滿足的概率.

解:(1)如圖,點(diǎn)所在的區(qū)域?yàn)檎叫?i>的內(nèi)部(含邊界),滿足的點(diǎn)的區(qū)域?yàn)橐?sub>為圓心,2為半徑的圓面(含邊界).

所求的概率

(2)滿足,且的點(diǎn)有41個(gè),

滿足,且的點(diǎn)有8個(gè),

所求的概率

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省英文學(xué)校高三下學(xué)期第一次月考理科數(shù)學(xué) 題型:解答題

.(本小題滿分14分)

                      已知橢圓、拋物線的焦點(diǎn)均在軸上,的中心和的頂點(diǎn)均為原點(diǎn),從每條曲

線上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:

3

2

4

0

4

                      (Ⅰ)求的標(biāo)準(zhǔn)方程;

                      (Ⅱ)請(qǐng)問(wèn)是否存在直線滿足條件:①過(guò)的焦點(diǎn);②與交不同兩點(diǎn)且滿

?若存在,求出直線的方程;若不存在,說(shuō)明理由。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)

已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.

(1)求橢圓的方程;

(2)若過(guò)點(diǎn)(2,0)的直線與橢圓相交于兩點(diǎn),設(shè)為橢圓上一點(diǎn),且滿(O為坐標(biāo)原點(diǎn)),當(dāng) 時(shí),求實(shí)數(shù)取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案