某農(nóng)場(chǎng)計(jì)劃種植甲、乙兩個(gè)品種的蔬菜,總面積不超過(guò)300畝,總成本不超過(guò)9萬(wàn)元.甲、乙兩種蔬菜的成本分別是每畝600元和每畝200元.假設(shè)種植這兩個(gè)品種的蔬菜,能為該農(nóng)場(chǎng)帶來(lái)的收益分別為每畝0.3萬(wàn)元和每畝0.2萬(wàn)元.問(wèn)該農(nóng)場(chǎng)如何分配甲、乙兩種蔬菜的種植面積,可使農(nóng)場(chǎng)的總收益最大,最大收益是多少萬(wàn)元?
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:設(shè)甲、乙兩種蔬菜的種植面積分別為x,y畝,農(nóng)場(chǎng)的總收益為z萬(wàn)元,建立目標(biāo)函數(shù)和約束條件,利用線性規(guī)劃進(jìn)行求解即可.
解答: 解:設(shè)甲、乙兩種蔬菜的種植面積分別為x,y畝,農(nóng)場(chǎng)的總收益為z萬(wàn)元,則…(1分)
x+y≤300
0.06x+0.02y≤9
x≥0,y≥0
…①…(5分)
目標(biāo)函數(shù)為z=0.3x+0.2y,…(6分)
不等式組①等價(jià)于
x+y≤300
3x+y≤450
x≥0,y≥0

可行域如圖所示,…(9分)
當(dāng)目標(biāo)函數(shù)對(duì)應(yīng)的直線經(jīng)過(guò)點(diǎn)M時(shí),
目標(biāo)函數(shù)z取最小值.…(10分)
解方程組
x+y=300
3x+y=450

得M的坐標(biāo)(75,225)…(12分)
所以zmax=0.3×75+0.2×225=67.5.…(13分)
答:分別種植甲乙兩種蔬菜75畝和225畝,可使農(nóng)場(chǎng)的總收益最大,最大收益為67.5萬(wàn)元.
…(14分)
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用問(wèn)題,根據(jù)條件建立約束條件,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下條件表達(dá)式正確的是(  )
A、1<x<2B、x><1
C、x<>1D、x≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

0
-1
x3dx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平移坐標(biāo)軸,將坐標(biāo)原點(diǎn)移至O′(1,1),則x′2+y′2+2x′-2y′+1=0在原坐標(biāo)系中的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠C=90°,則sin(A-B)+cos2A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了了解學(xué)生對(duì)新課程改革的滿意情況,有關(guān)教育部門對(duì)某中學(xué)的100名學(xué)生隨機(jī)進(jìn)行了調(diào)查,得到如下的統(tǒng)計(jì)表:
滿 意不滿意合 計(jì)
男 生50
女 生15
合 計(jì)100
已知在全部100名學(xué)生中隨機(jī)抽取1人對(duì)課程改革滿意的概率為
4
5
.參照附表,得到的正確結(jié)論是( 。
A、在犯錯(cuò)誤的概率不超過(guò)0.1%的情況下,有把握說(shuō)學(xué)生對(duì)新課程改革工作的滿意情況與性別有關(guān)
B、在犯錯(cuò)誤的概率不超過(guò)0.1%的情況下,有把握說(shuō)學(xué)生對(duì)新課程改革工作的滿意情況與性別無(wú)關(guān)
C、在犯錯(cuò)誤的概率不超過(guò)0.5%的情況下,有把握說(shuō)學(xué)生對(duì)新課程改革工作的滿意情況與性別有關(guān)
D、在犯錯(cuò)誤的概率不超過(guò)0.5%的情況下,有把握說(shuō)學(xué)生對(duì)新課程改革工作的滿意情況與性別無(wú)關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求y=x+
10x-x2-23
值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果不等式x2+mx+n≤0的解集為 A=[1,4],B=[a-1,a].
(1)求實(shí)數(shù)m,n的值;
(2)設(shè)p:x∈A,q:x∈B,若q是p的充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△A BC中,角 A,B,C的對(duì)邊長(zhǎng)分別為a,b,c,a=4,A=45°,B=60°,則b=(  )
A、2
6
B、2
3
C、2
2
D、
16
3

查看答案和解析>>

同步練習(xí)冊(cè)答案