2.已知向量$\vec a=({1,1})$,且$2\vec b-\vec a=({-5,1})$,則$\vec b$在$\vec a$上的投影為-$\frac{\sqrt{2}}{2}$.

分析 利用向量坐標(biāo)運(yùn)算性質(zhì)、投影的計(jì)算公式即可得出.

解答 解:∵$2\vec b-\vec a=({-5,1})$,∴$2\overrightarrow$=$\overrightarrow{a}$+(-5,1)=(-4,2).
∴$\overrightarrow$=(-2,1).
則$\vec b$在$\vec a$上的投影為$\frac{\vec a•\vec b}{{|{\overrightarrow a}|}}=-\frac{{\sqrt{2}}}{2}$.
故答案為:$-\frac{\sqrt{2}}{2}$.

點(diǎn)評(píng) 本題考查了向量坐標(biāo)運(yùn)算性質(zhì)、投影的計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若函數(shù)f(x)=$\frac{1}{3}{x^3}-(1+\frac{2}){x^2}$+2bx在(-3,1)上不是單調(diào)函數(shù),則f(x)在R上的極小值為( 。
A.$2b-\frac{4}{3}$B.$\frac{3}{2}b-\frac{2}{3}$C.0D.${b^2}-\frac{1}{6}{b^3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,AA1,BB1為圓柱OO1的母線,BC是底面圓O的直徑,D,E分別是AA1,CB1的中點(diǎn),BA=$\sqrt{7},AC=3,{B_1}C=4\sqrt{2}$
(1)證明:DE∥平面ABC;
(2)求圓柱OO1的體積和表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.如圖是根據(jù)環(huán)保部門某日早6點(diǎn)至晚9點(diǎn)在惠農(nóng)縣、平羅縣兩個(gè)地區(qū)附近的PM2.5監(jiān)測(cè)點(diǎn)統(tǒng)計(jì)的數(shù)據(jù)(單位:毫克/立方米)列出的莖葉圖,惠農(nóng)縣、平羅縣兩個(gè)地區(qū)濃度的方差較小的是( 。
A.惠農(nóng)縣B.平羅縣
C.惠農(nóng)縣、平羅縣兩個(gè)地區(qū)相等D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={x|x2-5x+6>0},B={x||x-3|<1},則A∪B=(  )
A.(3,4)B.RC.(-∞,2)∪(2,+∞)D.(3,4)∪{2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若不等式x2-kx+k-1=0對(duì)x∈(1,2)恒成立,則實(shí)數(shù)k的取值范圍是( 。
A.(-∞,2)B.(-∞,2]C.(2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若不等式2x-1>m(x2-1)對(duì)滿足-2≤m≤2的所有m都成立,則x的取值范圍是($\frac{\sqrt{7}-1}{2}$,$\frac{\sqrt{3}+1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知平面向量$\overrightarrow a,\overrightarrow b$滿足$|\overrightarrow a|=2,|\overrightarrow b|=1$,且$|\overrightarrow a+\overrightarrow b|=|\overrightarrow a-\overrightarrow b|$,則$|\overrightarrow a-\overrightarrow b|$=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知實(shí)數(shù)m滿足$\frac{3-i}{m+i}$=1-i(i為虛數(shù)單位),則m=( 。
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.-2D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案