A. | ①② | B. | ②③ | C. | ①④ | D. | ②④ |
分析 逐個驗證:①數(shù)集有些性質(zhì)以傳遞的,但有些性質(zhì)不能傳遞,因此,要判斷類比的結(jié)果是否正確,關(guān)鍵是要在新的數(shù)集里進(jìn)行論證,當(dāng)然要想證明一個結(jié)論是錯誤的,也可直接舉一個反例;
②在類比等差數(shù)列的性質(zhì)推理等比數(shù)列的性質(zhì)時,我們一般的思路有:由加法類比推理為乘法,由減法類比推理為除法,由算術(shù)平均數(shù)類比推理為幾何平均數(shù)等;
③向量要考慮方向;
④根據(jù)圓是橢圓的特殊情形驗證可知正確.
解答 解:①在復(fù)數(shù)集C中,若z1,z2∈C,z12+z22=0,則可能z1=1且z2=i.故錯誤;
②在類比等差數(shù)列的性質(zhì)推理等比數(shù)列的性質(zhì)時,我們一般的思路有:由加法類比推理為乘法,由減法類比推理為除法,由算術(shù)平均數(shù)類比推理為幾何平均數(shù)等,故我們可以類比推出:若數(shù)列{cn}是各項都為正數(shù)的等比數(shù)列,dn=$\root{n}{{{c_1}•{c_2}•{c_3}•…•{c_n}}}$,則數(shù)列{dn}也是等比數(shù)列.正確;
③由若a,b,c∈R則(ab)c=a(bc);類比推出:若$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$為三個向量則($\overrightarrow{a}$$\overrightarrow$)$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow$$\overrightarrow{c}$),不正確,因為($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$與$\overrightarrow{c}$共線,$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$)與$\overrightarrow{a}$共線,當(dāng)$\overrightarrow{a}$、$\overrightarrow{c}$方向不同時,向量的數(shù)量積運算結(jié)合律不成立;
④若圓的半徑為a,則圓的面積為πa2;類比推出:若橢圓的長半軸長為a,短半軸長為b,則橢圓的面積為πab.根據(jù)圓是橢圓的特殊情形驗證可知正確.
故選:D.
點評 類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個明確的命題(猜想).但類比推理的結(jié)論不一定正確,還需要經(jīng)過證明.
科目:高中數(shù)學(xué) 來源: 題型:解答題
分?jǐn)?shù) | 50~60 | 60~70 | 70~80 | 80~90 | 90~100 |
人數(shù) | 2 | 6 | 10 | 20 | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3$\sqrt{3}$ | B. | 2$\sqrt{5}$ | C. | 3$\sqrt{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com