△ABC中,內角A,B,C所對邊長為a,b,c,滿足a2+b2=2c2,如果c=2,那么△ABC的面積等于(  )
分析:由余弦定理列出關系式,將a2+b2=2c2,及c=2代入表示出ab,再利用三角形的面積公式即可求出三角形ABC的面積.
解答:解:由余弦定理得:c2=a2+b2-2abcosC,
將a2+b2=2c2,c=2代入得:4=8-2abcosC,即ab=
2
cosC
,
則S△ABC=
1
2
absinC=
1
2
2
cosC
•sinC=tanC.
故選C
點評:此題考查了余弦定理,三角形的面積公式,以及同角三角函數(shù)間的基本關系,熟練掌握余弦定理是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,內角A,B,C對邊的邊長分別是a,b,c,已知c=2,C=
π
3

(Ⅰ)若△ABC的面積等于
3
,求a,b;
(Ⅱ)若sinC+sin(B-A)=2sin2A,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,內角A、B、C對邊的邊長分別是a、b、c,已知c=2,C=
π
3
,△ABC的面積是
3
,求邊長a和b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•武昌區(qū)模擬)在△ABC中,內角A、B、C對邊長分別是a,b,c,已知c=2,C=
π
3

(I)若△ABC的面積等于
3
,求a,b
;
(II)若sinC+sin(B-A)=2sin2A,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,內角A,B,C的對邊分別為a,b,c,若a=6,b=4,C=120°,則△ABC的面積是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,內角A,B,C所對的邊分別是a,b,c,已知C=
π
3

(1)若a=2,b=3,求邊c;
(2)若c=
3
,sinC+sin(B-A)=sin2A,求△ABC的面積.

查看答案和解析>>

同步練習冊答案