已知定義在R上的單調(diào)函數(shù)f(x),存在實數(shù)x使得對任意實數(shù)x1,x2,總有f(xx1+xx2)=f(x)+f(x1)+f(x2)恒成立.
(1)求x的值;
(2)若f(x)=1,且對任意的正整數(shù)n.有,記Sn=a1a2+a2a3+…+anan+1,Tn=b1b2+b2b3+…+bnbn+1,比較與Tn的大小關(guān)系,并給出證明.
【答案】分析:(1)由題意對于任意實數(shù)x1,x2等式恒成立,故可采用賦值法求解;
(2)先證明{f(n)}是以1為首項,2為公差的等差數(shù)列,由此得 ,從而可求Sn,再證{bn}是等比數(shù)列從而可求Tn,代入與Tn作差,利用二項式定理展開,進行放縮,即可求得結(jié)果.
解答:解:(1)令x1=x2=0,得f(0)=f(x)+2f(0),∴f(x)=-f(0).①
令x1=1,x2=0,得f(x)=f(x)+f(1)+f(0),∴f(1)=-f(0).②
由①②得   f(x)=f(1).∴f(x)為單調(diào)函數(shù),
∴x=1.
(2)由(1)得f(x1+x2)=f(x1)+f(x2)+f(1)=f(x1)+f(x2)+1.
∵f(n+1)=f(n)+f(1)+1=f(n)+2,f(1)=1,∴f(n)=2n-1.(n∈Z*

又∵

,



=

=

∵4n=(3+1)n=Cnn3n+Cnn-13n-1+…+Cn13+Cn≥3n+1>2n+1,


點評:本題考查抽象函數(shù)的求值問題,一般采用賦值法解決,求數(shù)列的和,關(guān)鍵是求出其通項,再利用相應(yīng)的求和公式,不等式中的恒成立問題,往往相應(yīng)借助于函數(shù)的單調(diào)性解決.綜合性較強,屬難題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

15、已知定義在R上的單調(diào)函數(shù)f(x)滿足:存在實數(shù)x0,使得對于任意實數(shù)x1,x2,總有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立,則(i)f(1)+f(0)=
0
(ii)x0的值為
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的單調(diào)函數(shù)f(x),存在實數(shù)x0,使得對于任意實數(shù)x1,x2總有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立
(1)求x0的值;
(2)若f(x0)=1,且對任意正整數(shù)n,有an=
1
f(n)
,bn=f(
1
2n
)+1
,記Sn=a1a2+a2a3+…+anan+1,Tn=b1b2+b2b3+…+bnbn+1,求Sn和Tn;
(3)若不等式an+1+an+2+…+a2n
4
35
[log
1
2
(x+1)-log
1
2
(9x2-1)+1]
對任意不小于2的正整數(shù)n都成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的單調(diào)函數(shù)y=f(x),當x<0時,f(x)>1,且對任意的實數(shù)x,y∈R,有f(x+y)=f(x)f(y),
(1)求f(0),并寫出適合條件的函數(shù)f(x)的一個解析式;
(2)數(shù)列{an}滿足a1=f(0)且f(an+1)=
1
f(-2-an)
(n∈N+)

①求通項公式an的表達式;
②令bn=(
1
2
)anSn=b1+b2+…+bn,Tn=
1
a1a2
+
1
a2a3
+…+
1
anan+1
,試比較Sn
4
3
Tn
的大小,并加以證明;
③當a>1時,不等式
1
an+1
+
1
an+2
+…+
1
a2n
12
35
(log a+1x-log ax+1)
對于不小于2的正整數(shù)n恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•黃岡模擬)已知定義在R上的單調(diào)函數(shù)f(x),存在實數(shù)x0,使得對于任意實數(shù)x1,x2,總有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立.
(1)求x0的值;
(2)若f(x0)=1,且對于任意正整數(shù)n,有an=
1
f(n)
,bn=f(
1
2n
)+1
,記Sn=a1a2+a2a3+…+anan+1,Tn=b1b2+b2b3+…+bnbn+1,比較
4
3
Sn
與Tn的大小關(guān)系,并給出證明;
(3)在(2)的條件下,若不等式an+1+an+2+…+a2n
4
35
[log
1
2
(x+1)-log
1
2
(9x2-1)+1]
對任意不小于2的正整數(shù)n都成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•廣州三模)已知定義在R上的單調(diào)函數(shù)f(x),存在實數(shù)x0使得對任意實數(shù)x1,x2,總有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立.
(1)求x0的值;
(2)若f(x0)=1,且對任意的正整數(shù)n.有an=
1
f(n)
,bn=f(
1
2n
)+1
,記Sn=a1a2+a2a3+…+anan+1,Tn=b1b2+b2b3+…+bnbn+1,比較
4
3
Sn
與Tn的大小關(guān)系,并給出證明.

查看答案和解析>>

同步練習冊答案