如圖,正方體
的棱長為
,
、
分別是
、
的中點.
⑴求多面體
的體積;
⑵求
與平面
所成角的余弦值.
(1)
(2)
試題分析:⑴
……1分,
……2分,
……3分,所以,多面體
的體積
……4分
⑵以
為原點,
、
、
分別為
軸、
軸、
軸建立空間直角坐標(biāo)系……5分,則
,
,
,
……6分,設(shè)平面
的一個法向量為
,則
……8分,即
9分,取
,則
……10分,
11分,
12分,
與平面
所成角的余弦值
13分。
點評:主要是考查了線面角的求解以及錐體體積的求解,屬于中檔題。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,
ABCD是塊矩形硬紙板,其中
AB=2
AD,
AD=
,
E為
DC的中點,將它沿
AE折成直二面角
D-AE-B.
(1)求證:
AD⊥平面
BDE;
(2)求二面角
B-AD-E的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,四棱錐
的底面
是正方形,
平面
,
為
上的點,且
.
(1)證明:
;
(2)若
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖所示,正方形
與矩形
所在平面互相垂直,
,點
為
的中點.
(1)求證:
∥平面
;
(2)求證:
;
(3)在線段
上是否存在點
,使二面角
的大小為
?若存在,求出
的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在直三棱柱
中,
,
,
,點
是
的中點.
(1)求異面直線
與
所成角的余弦值;
(2)求平面
與平面
所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在直四棱柱
中,底面
為平行四邊形,且
,
,
,
為
的中點.
(1) 證明:
∥平面
;
(2)求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,三棱錐P—ABC中,平面PAC⊥平面BAC,AP=AB=AC=2,∠BAC=∠PAC=120°。
(I)求棱PB的長;
(II)求二面角P—AB—C的大小。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知四棱錐
的底面為直角梯形,
,
底面
,且
,
,
是
的中點。
(1)證明:面
面
;
(2)求
與
所成的角;
(3)求面
與面
所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知棱長為1的正方體ABCD-A1B1C1D1中,E、F、M分別是A1C1、A1D和B1A上任一點,求證:平面A1EF∥平面B1MC
查看答案和解析>>