4.直線y=kx+1與曲線y=x3+ax+b相切于點(diǎn)A(1,3),則2a+b的值為1.

分析 求出函數(shù)的導(dǎo)數(shù),求得切線的斜率,運(yùn)用切點(diǎn)在切線上,也在曲線上,解方程即可得到所求值.

解答 解:y=x3+ax+b的導(dǎo)數(shù)為y′=3x2+a,
可得切線的斜率為k=3+a,
又k+1=3,1+a+b=3,
解得k=2,a=-1,b=3,
即有2a+b=-2+3=1.
故答案為:1.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率,考查導(dǎo)數(shù)的幾何意義:函數(shù)在某點(diǎn)處的導(dǎo)數(shù)即為曲線在該點(diǎn)處的導(dǎo)數(shù),考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.F1,F(xiàn)2是雙曲線的兩個(gè)焦點(diǎn),B是虛軸的一個(gè)端點(diǎn),若△F1BF2是一個(gè)底角為30°的等腰三角形,則該雙曲線的離心率是$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.一個(gè)三棱錐的正視圖和俯視圖如圖所示,則該三棱錐的側(cè)視圖可能為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.復(fù)數(shù)z1,z2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于直線y=x對(duì)稱,且z1=3+2i,則z2=( 。
A.3-2iB.2-3iC.-3-2iD.2+3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知a,b∈R,則“$\sqrt{a-1}>\sqrt{b-1}$”是“l(fā)ogab<1”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若函數(shù)y=f(x)的導(dǎo)數(shù)y′=f′(x)仍是x的函數(shù),就把y′=f′(x)的導(dǎo)數(shù)y″=f″(x)叫做函數(shù)y=f(x)二階導(dǎo)數(shù),記做y(2)=f(2)(x).同樣函數(shù)y=f(x)的n-1階導(dǎo)數(shù)的導(dǎo)數(shù)叫做y=f(x)的n階導(dǎo)數(shù),表示y(n)=f(n)(x).在求y=ln(x+1)的n階導(dǎo)數(shù)時(shí),已求得$y'=\frac{1}{x+1},{y^{(2)}}=-\frac{1}{{{{(x+1)}^2}}},{y^{(3)}}=\frac{1•2}{{{{(x+1)}^3}}}$,${y^{(4)}}=-\frac{1•2•3}{{{{(x+1)}^4}}},…$,根據(jù)以上推理,函數(shù)y=ln(x+1)的第n階導(dǎo)數(shù)為${y^{(n)}}={({-1})^{n-1}}\frac{{({n-1})!}}{{{{({1+x})}^n}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在正方體ABCD-A1B1C1D1中,E為棱AA1的中點(diǎn),F(xiàn)是棱A1B1上的點(diǎn),且A1F:FB1=1:3,則異面直線EF與BC1所成角的正弦值為( 。
A.$\frac{{\sqrt{15}}}{3}$B.$\frac{{\sqrt{15}}}{5}$C.$\frac{{\sqrt{5}}}{3}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知圓O:x2+y2=9;直線l過點(diǎn)(0,3),傾斜角為α,α在區(qū)(0,π)內(nèi)隨機(jī)取值,l與圓O相交于A、B兩點(diǎn),則|AB|≤3$\sqrt{2}$的概率是(  )
A.$\frac{2}{3}$B.$\frac{1}{4}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知命題p:關(guān)于x的方程4x2-2ax+2a+5=0的解集至多有兩個(gè)子集,命題q:1-m≤x≤1+m,m>0,若?p是?q的必要不充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案