由曲線y=x2和直線x=0,x=1,以及y=0所圍成的圖形面積是   
【答案】分析:作出兩個曲線的圖象,求出它們的交點,由此可得所求面積為函數(shù)y=x2在區(qū)間[0,1]上的定積分的值,再用定積分計算公式加以運算即可得到本題答案.
解答:解:∵曲線y=x2和直線L:x=1的交點為A(1,1),
∴曲線C:y=x2、直線L:x=1與x軸所圍成的圖形面積為
S=x2dx=x3 =
故答案為:
點評:本題求兩條曲線圍成的曲邊圖形的面積,著重考查了定積分的幾何意義和積分計算公式等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)由曲線y=x2和直線x=0,x=1,y=t2,t∈(0,1)所圍成的圖形(陰影部分)的面積的最小值為( 。
A、
2
3
B、
1
3
C、
1
2
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由曲線y=x2和直線x=0,x=1,y=t2,t∈(0,1)所圍成的圖形的面積的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由曲線y=x2和直線y=1圍成圖形的面積是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由曲線y=x2和直線x=0,x=1,y=t2,t∈(0,1)所圍成的圖形(陰影部分)的面積的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由曲線y=x2和直線y=t2(0<t<1),x=1,x=0所圍成的圖形(陰影部分)的面積的最小值是多少?

查看答案和解析>>

同步練習(xí)冊答案