【題目】某影院為了宣傳影片《戰(zhàn)狼Ⅱ》,準(zhǔn)備采用以下幾種方式來(lái)擴(kuò)大影響,吸引市民到影院觀看影片,根據(jù)以往經(jīng)驗(yàn),預(yù)測(cè):

①分發(fā)宣傳單需要費(fèi)用1.5萬(wàn)元,可吸引30%的市民,增加收入4萬(wàn)元;

②網(wǎng)絡(luò)上宣傳,需要費(fèi)用8千元,可吸引20%的市民,增加收入3萬(wàn)元;

③制作小視頻上傳微信群,需要費(fèi)用2.5萬(wàn)元,可吸引35%的市民,增加收入5.5萬(wàn)元;

④與商場(chǎng)合作需要費(fèi)用1萬(wàn)元,購(gòu)物滿800元者可免費(fèi)觀看影片(商場(chǎng)購(gòu)票),可吸收15%的市民,增加收入2.5萬(wàn)元,

問: (1)在三個(gè)觀看影片的市民中,至少有一個(gè)是通過微信群宣傳方式吸引來(lái)的概率是多少?

(2)影院預(yù)計(jì)可增加盈利是多少?

【答案】(1) , (2) 萬(wàn)元

【解析】試題分析:(1)通過微信宣傳的概率P=0.35,所以不通過微信宣傳的概率為P=1-0.35=0.65,至少一個(gè)的反面是沒有,所以P=1-.(2)即求利潤(rùn)期望,(增加收入-費(fèi)用)概率,每項(xiàng)的累加即為所求。

試題解析:(1)設(shè)事件A:不是通過微信宣傳方式吸引來(lái)的觀眾,則

設(shè)事件B:三名觀眾中至少有一個(gè)是通過微信宣傳方式吸引的觀眾,

(2) 萬(wàn)元

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高三(1)班的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,據(jù)此解答如下問題:

(1)求全班人數(shù)及分?jǐn)?shù)在之間的頻數(shù);

(2)估計(jì)該班的平均分?jǐn)?shù),并計(jì)算頻率分布直方圖中間的矩形的高;

(3)若要從分?jǐn)?shù)在之間的試卷中任取兩份分析學(xué)生失分情況,在抽取的試卷中,求至少有一份分?jǐn)?shù)在之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知隨機(jī)變量ξ的分布列為

ξ

﹣2

﹣1

0

1

2

3

P

若P(ξ2>x)= ,則實(shí)數(shù)x的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè) .

(1)若,求的單調(diào)區(qū)間;

(2)討論在區(qū)間上的極值點(diǎn)個(gè)數(shù);

(3)是否存在,使得在區(qū)間上與軸相切?若存在,求出所有的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種植基地將編號(hào)分別為1,2,3,4,5,6的六個(gè)不同品種的馬鈴薯種在如圖所示的

A

B

C

D

E

F

這六塊實(shí)驗(yàn)田上進(jìn)行對(duì)比試驗(yàn),要求這六塊實(shí)驗(yàn)田分別種植不同品種的馬鈴薯,若種植時(shí)要求編號(hào)1,3,5的三個(gè)品種的馬鈴薯中至少有兩個(gè)相鄰,且2號(hào)品種的馬鈴薯不能種植在A、F這兩塊實(shí)驗(yàn)田上,則不同的種植方法有 ( )

A. 360種 B. 432種 C. 456種 D. 480種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AB⊥AD,BC= ,AB=1,BD=PA=2,M 為PD的中點(diǎn).

(1)求異面直線BD與PC所成角的余弦值;
(2)求二面角A﹣MC﹣D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從0,1,23,4這五個(gè)數(shù)中任選三個(gè)不同的數(shù)組成一個(gè)三位數(shù),記X為所組成的三位數(shù)各位數(shù)字之和.

1)求X是奇數(shù)的概率;

2)求X的概率分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)集具有性質(zhì)對(duì)任意的,使得成立.

(1)分別判斷數(shù)集是否具有性質(zhì),并說明理由;

(2)求證: ;

(2)若,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),記的導(dǎo)函數(shù).

(1)若曲線在點(diǎn)處的切線垂直于直線,求的值;

(2)討論的解的個(gè)數(shù);

(3)證明:對(duì)任意的,恒有.

查看答案和解析>>

同步練習(xí)冊(cè)答案