【題目】設(shè), .

(1)若,求的單調(diào)區(qū)間;

(2)討論在區(qū)間上的極值點個數(shù);

(3)是否存在,使得在區(qū)間上與軸相切?若存在,求出所有的值;若不存在,說明理由.

【答案】(1)減區(qū)間為 ,增區(qū)間為 (2)見解析(3)

【解析】試題分析:(1)先求函數(shù)導數(shù),再求導函數(shù)零點,列表分析導函數(shù)符號變化規(guī)律,確定單調(diào)區(qū)間(2)先求函數(shù)導數(shù),轉(zhuǎn)化為研究零點個數(shù),利用二次求導易得在區(qū)間上單調(diào)遞增,其零點個數(shù)決定于最小值的大小,討論其最小值與零的大小得到極值點個數(shù), (3)由題意得在區(qū)間上與軸相切切點為極值點,由(2)得 ,再根據(jù)極值點定義可得方程組 ,解得

試題解析:解:(1)當時:,(

時:,當時:,當時:

的減區(qū)間為:,增區(qū)間為

(2)

,故,,

顯然,又當時:.當時:

,,

在區(qū)間上單調(diào)遞增,

注意到:當時,,故上的零點個數(shù)由的符號決定.

①當,即:時:在區(qū)間上無零點,即無極值點.

②當,即:時:在區(qū)間上有唯一零點,即有唯一極值點.

綜上:當時:上無極值點.

時:上有唯一極值點.

(3)假設(shè)存在,使得在區(qū)間上與軸相切,則必與軸相切于極值點處,

由(2)可知:.不妨設(shè)極值點為,則有:

…(*)同時成立.

聯(lián)立得:,即代入(*)可得

,

,,當 2).

上單調(diào)遞減.又

上存在唯一零點

即當,單調(diào)遞增.當單調(diào)遞減.

因為,

上無零點,在上有唯一零點.

由觀察易得,故,即:

綜上可得:存在唯一的使得在區(qū)間上與軸相切.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=﹣x2+ax+b的值域為(﹣∞,0],若關(guān)x的不等式 的解集為(m﹣4,m+1),則實數(shù)c的值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x|(x﹣a),a為實數(shù).
(1)若函數(shù)f(x)為奇函數(shù),求實數(shù)a的值;
(2)若函數(shù)f(x)在[0,2]為增函數(shù),求實數(shù)a的取值范圍;
(3)是否存在實數(shù)a(a<0),使得f(x)在閉區(qū)間 上的最大值為2,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x||x﹣a|≤3,x∈R},B={x|x2﹣3x﹣4>0,x∈R}.
(1)若a=1,求A∩B;
(2)若A∪B=R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=log3x.
(1)求f(45)﹣f(5)的值;
(2)若函數(shù)y=g(x)(x∈R)是奇函數(shù),當x>0時,g(x)=f(x),求函數(shù) y=g(x)的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知各項均為整數(shù)的數(shù)列{an}滿足an2≤1,1≤a12+a22+…+an2≤m,m,n∈N*
(1)若m=1,n=2,寫出所有滿足條件的數(shù)列{an};
(2)設(shè)滿足條件的{an}的個數(shù)為f(n,m).
①求f(2,2)和f(2016,2016);
②若f(m+1,m)>2016,試求m的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某影院為了宣傳影片《戰(zhàn)狼Ⅱ》,準備采用以下幾種方式來擴大影響,吸引市民到影院觀看影片,根據(jù)以往經(jīng)驗,預(yù)測:

①分發(fā)宣傳單需要費用1.5萬元,可吸引30%的市民,增加收入4萬元;

②網(wǎng)絡(luò)上宣傳,需要費用8千元,可吸引20%的市民,增加收入3萬元;

③制作小視頻上傳微信群,需要費用2.5萬元,可吸引35%的市民,增加收入5.5萬元;

④與商場合作需要費用1萬元,購物滿800元者可免費觀看影片(商場購票),可吸收15%的市民,增加收入2.5萬元,

問: (1)在三個觀看影片的市民中,至少有一個是通過微信群宣傳方式吸引來的概率是多少?

(2)影院預(yù)計可增加盈利是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某倉庫為了保持庫內(nèi)的濕度和溫度,四周墻上均裝有如圖所示的自動通風設(shè)施.該設(shè)施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等邊三角形,固定點E為AB的中點.△EMN是由電腦控制其形狀變化的三角通風窗(陰影部分均不通風),MN是可以沿設(shè)施邊框上下滑動且始終保持和AB平行的伸縮橫桿.

(1)設(shè)MN與AB之間的距離為x米,試將△EMN的面積S(平方米)表示成關(guān)于x的函數(shù);
(2)求△EMN的面積S(平方米)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“累積凈化量”是空氣凈化器質(zhì)量的一個重要衡量指標,它是指空氣凈化從開始使用到凈化效率為50%時對顆粒物的累積凈化量,以克表示,根據(jù)《空氣凈化器》國家標準,對空氣凈化器的累計凈化量有如下等級劃分:

累積凈化量(克)

12以上

等級

為了了解一批空氣凈化器(共5000臺)的質(zhì)量,隨機抽取臺機器作為樣本進行估計,已知這臺機器的累積凈化量都分布在區(qū)間中,按照、、均勻分組,其中累積凈化量在的所有數(shù)據(jù)有:4.5,4.6,5.2,5.3,5.7和5.9,并繪制了頻率分布直方圖,如圖所示:

(1)求的值及頻率分布直方圖中的值;

(2)以樣本估計總體,試估計這批空氣凈化器(共5000臺)中等級為的空氣凈化器有多少臺?

(3)從累積凈化量在的樣本中隨機抽取2臺,求恰好有1臺等級為的概率.

查看答案和解析>>

同步練習冊答案