設(shè)集合A={x|-2≤x≤5},B={x|x2-3mx+2m2-m-1<0},若B=A∩B,求實數(shù)m的取值范圍.
考點:交集及其運算
專題:計算題
分析:根據(jù)已知化簡集合B,由B=A∩B,進一步分情況討論、運算即可求出實數(shù)m的取值范圍.
解答: 解:∵A={x|-2≤x≤5},
B={x|x2-3mx+2m2-m-1<0}={x|(x-2m-1)(x-m+1)=0}.
若B=A∩B,則A?B,
m-1≥-2
2m+1≤5
m-1≤2m+1
,或
2m+1≥-2
m-1≤5
2m+1≤m-1

解得-1≤m≤2,或m不存在.
故m的取值范圍:{m|-1≤m≤2}.
點評:本題考查了交集及其運算,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,那么(a0+a2+a4)(a1+a3+a5)的值等于( 。
A、-256B、256
C、-512D、512

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓(x-2)2+(y+3)2=2的圓心和半徑分別是( 。
A、(-2,3),1
B、(2,-3),3
C、(-2,3),
2
D、(2,-3),
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,且經(jīng)過點M(2,1)平行于OM的直線l在y軸上的截距為m(m≠0),l與橢圓有A、B兩個不同的交點
(Ⅰ)求橢圓的方程;
(Ⅱ)求m的取值范圍;
(Ⅲ)求證:直線MA、MB與x軸始終圍成一個等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga
1+x
1-x
,
(1)求f(x)的定義域;
(2)求使f(x)>0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別是角A,B,C 的對邊.
(1)用向量知識證明:正弦定理:
a
sinA
=
b
sinB
=
c
sinC
=2R(R為△ABC外接圓的半徑)
(2)已知8b=5c,C=2B,求cosC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市居民1999~2003年貨幣收入x與購買商品支出Y的統(tǒng)計資料如下表所示:
單位:億元
年份19992000200120022003
貨幣收入x4042444750
購買商品支出Y3334363941
(Ⅰ)畫出散點圖,判斷x與Y是否具有相關(guān)關(guān)系;
(Ⅱ)已知
b
=0.842,
a
=-0.943,請寫出Y對x 的回歸直線方程,并計算出1999年和2003的隨機誤差效應(yīng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}前n項和An=-
1
2
n2+kn(其中k∈N+),且An的最大值為8;數(shù)列{bn}的前n項和Bn=
n+2
3
bn,且b1=1.
(1)確定常數(shù)k,并求an;
(2)求數(shù)列{
bn
(9-2an)4n
}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩位同學(xué)參加數(shù)學(xué)競賽培訓(xùn),現(xiàn)把他們在培訓(xùn)期間參加的4次預(yù)賽成績繪制成表
次數(shù)

名字
第一次第二次第三次第四次

79818882

77858383
(Ⅰ)計算甲、乙兩人各自的平均成績;
(Ⅱ)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從統(tǒng)計學(xué)的角度考慮,你認為選派哪位學(xué)生參加合適?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案