【題目】咖啡館配制兩種飲料,甲種飲料每杯分別用奶粉、咖啡、糖9g、4g、3g;乙種飲料每杯分別用奶粉、咖啡、糖4g、5g、10g,已知每天使用原料限額為奶粉3600g,咖啡2000g,糖3000g,如果甲種飲料每杯能獲利0.7元,乙種飲料每杯能獲利1.2元,每天在原料使用的限額內(nèi),飲料能全部售完,問(wèn)咖啡館每天怎樣安排配制飲料獲利最大?

【答案】解:設(shè)咖啡館每天配制甲種飲料 杯,乙種飲料 杯,獲利 元.則

如圖所示,在點(diǎn) 處,即 時(shí) (元)

答:咖啡館每天配制甲種飲料200杯,乙種飲料240杯,能使咖啡館獲利最大


【解析】(1)根據(jù)題意列把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,列出函數(shù)的解析式再利用線性規(guī)劃,由題意作出不等式的平面區(qū)域,聯(lián)立直線的方程求出交點(diǎn)的坐標(biāo)把目標(biāo)函數(shù)平移到該點(diǎn)即可得出最大值。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 ,其中a>0,a≠1.
(Ⅰ)若f(x)在(﹣∞,+∞)上是單調(diào)函數(shù),求實(shí)數(shù)a,b的取值范圍;
(Ⅱ)當(dāng)a=2時(shí),函數(shù)f(x)在(﹣∞,+∞)上只有一個(gè)零點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形ABCD中,BCDC , AEDCM , N分別是AD , BE的中點(diǎn),將三角形ADE沿AE折起,則下列說(shuō)法正確的是(填序號(hào)).

①不論D折至何位置(不在平面ABC內(nèi)),都有MN∥平面DEC;②不論D折至何位置,都有MNAE;③不論D折至何位置(不在平面ABC內(nèi)),都有MNAB;④在折起過(guò)程中,一定存在某個(gè)位置,使ECAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{Sn}的前n項(xiàng)和為Tn,滿足Tn=2Sn-n2,n∈N*.
(1)求a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是定義在R上且以2為周期的偶函數(shù),當(dāng)0≤x≤1,f(x)=x2 . 如果函數(shù)g(x)=f(x)﹣(x+m)有兩個(gè)零點(diǎn),則實(shí)數(shù)m的值為(
A.2k(k∈Z)
B.2k或2k+ (k∈Z)
C.0
D.2k或2k﹣ (k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果 是平面 內(nèi)所有向量的一組基底,那么( )
A.若實(shí)數(shù) ,使 ,則
B.空間任一向量 可以表示為 ,這里 , 是實(shí)數(shù)
C. 不一定在平面 內(nèi)
D.對(duì)平面 內(nèi)任一向量 ,使 的實(shí)數(shù) 有無(wú)數(shù)對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 , ,設(shè)函數(shù) .
(1)求函數(shù) 的單調(diào)遞增區(qū)間;
(2)在 中,邊 分別是角 的對(duì)邊,角 為銳角,若
, , 的面積為 ,求邊 的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: =1(a>b>0)的焦距為2 ,橢圓C上任意一點(diǎn)到橢圓兩個(gè)焦點(diǎn)的距離之和為6. (Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l:y=kx﹣2與橢圓C交于A,B兩點(diǎn),點(diǎn)P(0,1),且|PA|=|PB|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,Sn=2n2+5n.
(1)求證:數(shù)列{3 }為等比數(shù)列;
(2)設(shè)bn=2Sn﹣3n,求數(shù)列{ }的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案