【題目】現(xiàn)有一段長(zhǎng)度為的木棍,希望將其鋸成盡可能多的小段,要求每一小段的長(zhǎng)度都是整數(shù),并且任何一個(gè)時(shí)刻,當(dāng)前最長(zhǎng)的一段都嚴(yán)格小于當(dāng)前最短的一段長(zhǎng)度的2倍,記對(duì)符合條件時(shí)的最多小段數(shù)為,則( )。
A. B. C. D.
【答案】AC
【解析】
當(dāng)時(shí)最多可鋸成三段:7=3+4=3+2+2,所以,選項(xiàng)A正確,B不正確;若時(shí),最多能鋸成6段,具體構(gòu)造如下:30=12+18=12+10+8=6+6+10+8=6+6+5+5+8=6+6+5+5+4+4.
下證大于6段是不可能成立的.
若可以鋸成7段,設(shè)為(其中),顯然.如果,則,而,矛盾.因此,或6.
當(dāng)時(shí),只能是6+4+4+4+4+4+4,退一步必出現(xiàn)6+4=10,或4+4=8,8與4共同出現(xiàn)在等式中,由題意知這是不可能的,矛盾.
同理,當(dāng)時(shí),所有情況為5+5+4+4+4+4+4,或5+5+5+4+4+4+3,或5+5+5+5+4+3+3.
針對(duì)以上情形采取還原的方法都可得出矛盾.
綜上,時(shí)最多能鋸成6段,即,所以選項(xiàng)C正確,選項(xiàng)D不正確.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn),,為動(dòng)點(diǎn),且直線與直線的斜率之積為.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè)過點(diǎn)的直線與曲線相交于不同的兩點(diǎn),.若點(diǎn)在軸上,且,求點(diǎn)的縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.
(1)求曲線的普通方程;
(2)若與曲線相切,且與坐標(biāo)軸交于兩點(diǎn),求以為直徑的圓的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合為平面內(nèi)的一個(gè)有限點(diǎn)集, 為平面內(nèi)的一個(gè)正三角形,集合,且.若對(duì)任意滿足條件的集合S,均可以被正三角形的兩個(gè)平移圖形覆蓋,證明:集合可以被正三角形的兩個(gè)平移圖形覆蓋.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】凸多面體的每個(gè)面均為三角形,每條棱上均標(biāo)記字母之一,且每個(gè)面的三條邊上恰各有一個(gè)。對(duì)每一個(gè)面,當(dāng)旋轉(zhuǎn)多面體使該面在我們眼前時(shí),按照字母順序觀察其三邊,若是逆時(shí)針方向,則稱其為正面;否則,稱其為反面。證明:正面與反面的數(shù)目之差能被4整除。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)的單調(diào)區(qū)間:
(Ⅱ)求函數(shù)的極值;
(Ⅲ)若函數(shù)有兩個(gè)不同的零點(diǎn),求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知焦點(diǎn)在軸上的拋物線過點(diǎn),橢圓的兩個(gè)焦點(diǎn)分別為 ,其中 與的焦點(diǎn)重合,過與長(zhǎng)軸垂直的直線交橢圓于兩點(diǎn)且,曲線是以原點(diǎn)為圓心以 為半徑的圓.
(1)求與及的方程;
(2)若動(dòng)直線與圓相切,且與交與兩點(diǎn),三角形 的面積為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將4個(gè)編號(hào)為1、2、3、4的小球放人編號(hào)為1、2、3、4的盒子中.
(1)恰好有一個(gè)空盒,有多少種放法?
(2)每個(gè)盒子放一個(gè)球,且恰好有一個(gè)球的編號(hào)與盒子的編號(hào)相同,有多少種放法?
(3)把4個(gè)不同的小球換成4個(gè)相同的小球,恰有一個(gè)空盒,有多少種放法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)f(x)(x∈R),有下述四個(gè)結(jié)論:
①任意x∈R,等式f(﹣x)+f(x)=0恒成立;
②任意x1,x2∈R,若x1≠x2,則一定有f(x1)≠f(x2);
③存在m∈(0,1),使得方程|f(x)|=m有兩個(gè)不等實(shí)數(shù)根;
④存在k∈(1,+∞),使得函數(shù)g(x)=f(x)﹣kx在R上有三個(gè)零點(diǎn).
其中包含了所有正確結(jié)論編號(hào)的選項(xiàng)為( )
A.①②③④B.①②③C.①②④D.①②
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com