設(shè),分別為橢圓的左、右焦點(diǎn),過(guò)的直
與橢圓 相交于,兩點(diǎn),直線的傾斜角為,到直線的距離為;
(1)求橢圓的焦距;
(2)如果,求橢圓的方程.
解:(1)設(shè)焦距為,由已知可得到直線的距離,故,
所以橢圓的焦距為4;                   ………………………… 4分                                             
(2)設(shè),由題意知
直線的方程為
聯(lián)立 得,
解得, …………………………… 8分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823180812908507.gif" style="vertical-align:middle;" />,所以

,又,故  
故橢圓的方程為.  ……………………………………… 12分 
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓經(jīng)過(guò)點(diǎn),一個(gè)焦點(diǎn)是
(I)求橢圓的方程;
(II)設(shè)橢圓軸的兩個(gè)交點(diǎn)為、,不在軸上的動(dòng)點(diǎn)在直線上運(yùn)動(dòng),直線、分別與橢圓交于點(diǎn)、,證明:直線經(jīng)過(guò)焦點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)
橢圓與拋物線的一個(gè)交點(diǎn)為M,拋物線在點(diǎn)M處的切線過(guò)橢圓的右焦點(diǎn)F.

(Ⅰ)若M,求的標(biāo)準(zhǔn)方程;
(II)求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

過(guò)橢圓內(nèi)一點(diǎn)引一條弦,使得弦被點(diǎn)平分,則此弦所在的直線方程為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知為原點(diǎn),從橢圓 + =1的左焦點(diǎn)引圓的切線交橢圓于點(diǎn),切點(diǎn)位于之間,為線段的中點(diǎn),則的值為_(kāi)______________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)
已知過(guò)橢圓C:=1(a>b>0)右焦點(diǎn)F且斜率為1的直線交橢圓C于A,B兩點(diǎn),N為弦AB的中點(diǎn);又函數(shù)圖象的一條對(duì)稱軸的方程是.
(1)求橢圓C的離心率e與直線AB的方程;
(2)對(duì)于任意一點(diǎn)M∈C,試證:總存在角θ(θ∈R)使等式+成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若焦點(diǎn)在軸上的橢圓的離心率為,則m=( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知點(diǎn),橢圓的右準(zhǔn)線與x軸相交于點(diǎn)D,右焦點(diǎn)F到上頂點(diǎn)的距離為
(1)求橢圓的方程;
(2)是否存在過(guò)點(diǎn)F且與x軸不垂直的直線與橢圓交于A、B兩點(diǎn),使得?若存在,求出直線;若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)在橢圓上,則的最大值是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案