已知數(shù)列{an}是等差數(shù)列,其中a2=22,a7=7
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為{Sn},求Sn的最大值.

解:(1)∵a7=a2+5d,∴d=-3,
∴an=a2+(n-2)d=22-3(n-2)=-3n+28;(6分)
(2)令an=-3n+28<0,得
∴數(shù)列{an}的前9項(xiàng)都大于0,從第10項(xiàng)起小于0,
故當(dāng)n=9時(shí)Sn最大,且最大值S9==117.(12分)
分析:(1)根據(jù)等差數(shù)列的性質(zhì),由a2和a7求出等差數(shù)列的公差d,根據(jù)a2和公差d寫出數(shù)列的通項(xiàng)公式即可;
(2)令通項(xiàng)公式an小于0列出關(guān)于n的不等式,求出不等式的解集得到n的取值范圍,進(jìn)而得到數(shù)列的前9項(xiàng)大于0,從第10項(xiàng)開始小于0,故前9項(xiàng)的和最大,利用等差數(shù)列的前n項(xiàng)和公式求出S9即可.
點(diǎn)評:本題注意第2問求最大值的方法:利用不等式得到數(shù)列各項(xiàng)的正負(fù)情況,進(jìn)而判斷出前n項(xiàng)和的最大值.同時(shí)要求學(xué)生熟練掌握等差數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式的靈活運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義一個(gè)“等積數(shù)列”:在一個(gè)數(shù)列中,如果每一項(xiàng)與它后一項(xiàng)的積都是同一常數(shù),那么這個(gè)數(shù)列叫“等積數(shù)列”,這個(gè)常數(shù)叫做這個(gè)數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=2,公積為5,則這個(gè)數(shù)列的前n項(xiàng)和Sn的計(jì)算公式為:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一個(gè)數(shù)列中,如果?n∈N*,都有an•an+1•an+2=k(k為常數(shù)),那么這個(gè)數(shù)列叫做等積數(shù)列,k叫做這個(gè)數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=1,a2=3,公積為27,則a1+a2+a3+…+a18=
78
78

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義“等積數(shù)列”:在一個(gè)數(shù)列中,如果每一個(gè)項(xiàng)與它的后一項(xiàng)的積都為同一個(gè)常數(shù),那末這個(gè)數(shù)列叫做等積數(shù)列,這個(gè)常數(shù)叫做該數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=2,公積為5,Tn為數(shù)列{an}前n項(xiàng)的積,則T2011=
51006
2
51006
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們對數(shù)列作如下定義,如果?n∈N*,都有anan+1an+2=k(k為常數(shù)),那么這個(gè)數(shù)列叫做等積數(shù)列,k叫做這個(gè)數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=1,a2=2,公積為6,則a1+a2+a3+…+a9=
18
18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列的定義為:在一個(gè)數(shù)列中,從第二項(xiàng)起,如果每一項(xiàng)與它的前一項(xiàng)的差都為同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等差數(shù)列,這個(gè)常數(shù)叫做該數(shù)列的公差.
(1)類比等差數(shù)列的定義給出“等和數(shù)列”的定義;
(2)已知數(shù)列{an}是等和數(shù)列,且a1=2,公和為5,求 a18的值,并猜出這個(gè)數(shù)列的通項(xiàng)公式(不要求證明).

查看答案和解析>>

同步練習(xí)冊答案