12.一個(gè)包裝箱內(nèi)有5件產(chǎn)品,其中3件正品,2件次品.現(xiàn)隨機(jī)抽出兩件產(chǎn)品檢測,則事件“檢測出次品”的概率為$\frac{7}{10}$.

分析 把隨機(jī)抽出兩件產(chǎn)品恰好有次品這一事件列舉出來,看方法數(shù)有多少,再列舉總的方法數(shù),兩者相除即可.

解答 解:將5件產(chǎn)品編號,ABC(正品),d,e(次品),
從5件產(chǎn)品中選2件,其包含的基本事件為:
(AB)(AC)(Ad)(Ae),
(BC)(Bd)(Be)(Cd),
(Ce)(de)共有10種,
則“檢測出次品”的概率為:p=$\frac{7}{10}$,
故答案為:$\frac{7}{10}$.

點(diǎn)評 在使用古典概型的概率公式時(shí),應(yīng)該注意:(1)要判斷該概率模型是不是古典概型;(2)要找出隨機(jī)事件A包含的基本事件的個(gè)數(shù)和試驗(yàn)中基本事件的總數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知定義在R上的二次函數(shù)f(x)滿足:f(x)=-x2+bx+c,且f(x)=f(1-x).對于數(shù)列{an},若a1=0,an+1=f(an)(n∈N*
(1)求數(shù)列{an}是單調(diào)遞減數(shù)列的充要條件;
(2)求c的取值范圍,使數(shù)列{an}是單調(diào)遞增數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列關(guān)于條件語句的敘述,正確的是( 。
A.條件語句中必須有if、else和end
B.條件語句中可以沒有end
C.條件語句中可以沒有else,但必須有end
D.條件語句中可以沒有else及沒end

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列語句中的賦值語句是( 。
A.x=x^3B.2=xC.x=y=2D.x+y=z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機(jī)抽取8次,記錄如下:
8281797895889384
9295807583809085
(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)求兩位學(xué)生預(yù)賽成績的平均數(shù)和方差;
(3)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從統(tǒng)計(jì)學(xué)的角度考慮,你認(rèn)為選派哪位學(xué)生參加合適?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x^2}+{y^2}≤4\\ x-y≥0\end{array}$,則z=$\sqrt{{{(x+4)}^2}+{{(y-4)}^2}}$的最大值和最小值分別為( 。
A.$36+16\sqrt{2}$,32B.$4\sqrt{2}+2$,$4\sqrt{2}$C.$36+16\sqrt{2}$,$4\sqrt{2}$D.$36+16\sqrt{2}$,36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.做一個(gè)容積為4升的正方形底無蓋水箱,要使得材料最省,則此水箱底面邊長為( 。
A.$\frac{1}{2}$分米B.1分米C.2分米D.4分米

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在多面體ABCDM中,△BCD是等邊三角形,△CMD是等腰直角三角形,
∠CMD=90°,平面CMD⊥平面BCD,AB⊥平面BCD.
(Ⅰ)求證:CD⊥AM;
(Ⅱ)若AM=BC=2,
(1)求直線AM與平面BDM所成角的正弦值.
(2)求二面角B-AD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列命題中正確的是( 。
A.若β=α+k•360°(k∈Z),則α與β終邊相同B.第二象限角一定是鈍角
C.終邊在y軸正半軸上的角是直角D.第四象限角一定是負(fù)角

查看答案和解析>>

同步練習(xí)冊答案