2.已知直線l:3x+4y-1=0,圓C:(x+1)2+(y+1)2=r2,若圓上有且僅有兩個點到直線的距離為1,則圓C半徑r的取值范圍是$\frac{3}{5}$<r<$\frac{13}{5}$.

分析 圓(x+1)2+(y+1)2=r2上有且僅有兩個點到直線3x+4y-1=0的距離等于1,先求圓心到直線的距離,再求半徑的范圍.

解答 解:圓(x+1)2+(y+1)2=r2的圓心坐標(biāo)(-1,-1),圓心到直線3x+4y-1=0的距離為:$\frac{|-3-4-1|}{\sqrt{{3}^{2}+{4}^{2}}}$=$\frac{8}{5}$.
又圓(x+1)2+(y+1)2=r2上有且僅有兩個點到直線3x+4y-1=0的距離等于1,滿足|r-$\frac{8}{5}$|<1,
解得$\frac{3}{5}$<r<$\frac{13}{5}$.
故半徑R的取值范圍是$\frac{3}{5}$<r<$\frac{13}{5}$.
故答案為:$\frac{3}{5}$<r<$\frac{13}{5}$.

點評 本題考查直線與圓的位置關(guān)系,考查數(shù)形結(jié)合的數(shù)學(xué)思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖所示,四棱錐P-ABCD的底面為等腰梯形,AB∥DC,AB=2AD,若PA⊥平面ABCD,∠ABC=60°
(1)求證:平面PAC⊥平面PBC;
(2)若PA=AB,求平面PBC與平面PAD所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.化簡$\sqrt{1+2sin5cos5}+\sqrt{1-2sin5cos5}$,得到( 。
A.-2sin5B.-2cos5C.2sin5D.2cos5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在直角坐標(biāo)系xOy中,橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左右焦點分別為F1,F(xiàn)2,左、右、上、下四個頂點分別為A,C,B,D,四邊形F1BF2D的面積與四邊形ABCD的面積的比值為$\frac{{\sqrt{6}}}{3}$.
(1)求橢圓E的離心率;
(2)設(shè)橢圓E的焦距為$2\sqrt{2}$,直線l與橢圓E交于P,Q兩點,且OP⊥OQ,求證:直線l恒與一定圓相切,并求出該圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知$α=-\frac{π}{3}+2Kπ(K∈Z)$,且2π≤α<4π,則α=$\frac{11π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.橢圓的中心為坐標(biāo)原點,長、短軸長之比為$\frac{3}{2}$,一個焦點是(0,-2).
(1)求橢圓的離心率;
(2)求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.給出如下三個命題:
①若“p且q”為假命題,則p、q均為假命題;
②命題“若a>b,則2a>2b-1”的否命題為“若a≤b,則2a≤2b-1”;
③“?x∈R,x2+1≥1”的否定是“?x∈R,x2+1≤1”.
其中不正確的命題的序號是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.一個半徑為2的球體經(jīng)過切割后,剩余部分幾何體的三視圖如圖所示,則該幾何體的體積為8π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知0<α<$\frac{π}{2}$,$\frac{π}{2}$<β<π,且cos(α+$\frac{π}{4}$)=$\frac{1}{3}$,cos($\frac{π}{4}$-$\frac{β}{2}$)=$\frac{{\sqrt{3}}}{3}$,
(1)求cosβ的值;            
(2)求cos(2α+β)的值.

查看答案和解析>>

同步練習(xí)冊答案