分析 (1)利用長、短軸長之比為$\frac{3}{2}$,一個焦點是(0,-2),求出a,b,即可求橢圓的離心率;
(2)根據(jù)焦點位置求橢圓的方程.
解答 解:(1)由題意a=$\frac{3}{2}$b,c=2,
∴$\sqrt{\frac{9}{4}^{2}-^{2}}$=2,∴b2=$\frac{16}{5}$,∴a=$\frac{6}{\sqrt{5}}$,
∴橢圓的離心率e=$\frac{c}{a}$=$\frac{\sqrt{5}}{3}$;
(2)橢圓的方程$\frac{{y}^{2}}{\frac{36}{5}}+\frac{{x}^{2}}{\frac{16}{5}}$=1.
點評 本題考查橢圓的方程與性質(zhì),考查學(xué)生的計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|3≤x<6} | B. | {x|3<x<6} | C. | {x|3<x≤6} | D. | {x|3≤x≤6} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k≤-1或k≥5 | B. | -5≤k≤1 | C. | -1≤k≤5 | D. | k≤-5或k≥1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com