已知雙曲線C:x2-
y2
3
=1,若a>0,求點M(a,0)到雙曲線C的距離的最小值f(a).
考點:雙曲線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:首先對a進行討論①0<a≤1②a>1,進一步求出點到雙曲線距離的最小值.
解答: 解:雙曲線C:x2-
y2
3
=1,若a>0,
①當0<a≤1時,點M(a,0)到雙曲線的距離的最小值f(a)=1-a.
②當a>1時,點M(a,0)到雙曲線的距離的最小值f(a)=a-1.
點評:本題考查的知識要點:分類討論思想的應(yīng)用,特殊位置的應(yīng)用,屬于基礎(chǔ)題型.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{xn}滿足下列條件:x1=a,x2=b,xn+1-(λ+1)xn+λxn-1=0(n∈N*且n≥2),其中a、b為常數(shù),且a<b,λ為非零常數(shù),猜想xn的通項公式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線x2-y2=1和斜率為
1
2
的直線l交于A,B兩點,當l變化時,線段AB的中點M的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)1+i的模是
 
,它的輻角主值是
 
,三角形式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于任意實數(shù)x∈(-2,2],使(x2+x+1)a≤x3-1恒成立,則實數(shù)a的取值集合是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=3,AB=2,BC=
3
,則二面角P-BD-A的正切值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:平面ABC⊥平面BCD,且∠BAC=∠BCD=90°,求證:AB⊥CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率e為黃金分割比
5
-1
2
,則稱該橢圓為“優(yōu)美橢圓”,該類橢圓具有性質(zhì)b2=ac(c為該橢圓的半焦距).那么在雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)中具有類似性質(zhì)的“優(yōu)美雙曲線”的離心率為( 。
A、
5
-1
2
B、
5
+1
2
C、
5
2
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m∈R,在平面直角坐標系中,已知向量
a
=(mx,y+1),向量
b
=(x,y-1),
a
b
,動點M(x,y)的軌跡為E.
(1)求軌跡E的方程,并說明該方程所表示曲線的形狀;
(2)當m=
1
4
時,軌跡E與直線y=x-1交于A、B兩點,求弦AB的長.

查看答案和解析>>

同步練習冊答案